DOI QR코드

DOI QR Code

1 kWe 급 고체산화물 연료전지 스택에서의 유동 해석

Numerical Analysis in a 1 kWe SOFC Stack for the Flow Phenomena

  • 이근우 (한남대학교 기계공학과) ;
  • 김영진 (한남대학교 기계공학과) ;
  • 윤호원 (한남대학교 기계공학과) ;
  • 김현진 (한국에너지기술연구원 고온에너지전환연구실) ;
  • 윤경식 (한국에너지기술연구원 고온에너지전환연구실) ;
  • 유지행 (한국에너지기술연구원 고온에너지전환연구실)
  • KUNWOO YI (Department of Mechanical Engineering, Hannam University) ;
  • YOUNG JIN KIM (Department of Mechanical Engineering, Hannam University) ;
  • HAOYUAN YIN (Department of Mechanical Engineering, Hannam University) ;
  • HYEON JIN KIM (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research) ;
  • KYONG SIK YUN (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research) ;
  • JI HAENG YU (High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research)
  • 투고 : 2023.02.28
  • 심사 : 2023.04.19
  • 발행 : 2023.04.28

초록

This study performed the numerical analysis of the internal flow phenomena of 1 kWe-class solid oxide fuel cell (SOFC) stacks with internal manifold type and planar cells using commercial computational fluid dynamics (CFD) software, Star-CCM+. In particular, the locations where the turbulent phenomena occur inside the SOFC stack were investigated. In addition, the laminar flow model and the standard k-ε turbulent model were used to calculate the SOFC stack, separately. And, the calculation results of both laminar and turbulent models were compared. The calculation results showed that turbulent phenomena occurred mainly in the cathode flow. Especially, the turbulent phenomena were found in the cathode inlet/outlet region, and local turbulence occurred in the end plate near the inlet pipe.

키워드

과제정보

이 논문은 2023년도 한남대학교 학술연구비 지원에 의하여 연구되었음.

참고문헌

  1. Y. D. Lee, J. Y. Kim, D. J. Yoo, H. Ju, and H. Kim, "Review of research trend in fuel cell: analysis on fuel-cell-related technologies in electrode, electrolyte, separator plate, stack, sys tem, balance of plant, and diagnosis areas", Journal of Hydrogen and New Energy, Vol. 31, No. 6, 2020, pp. 530-545, doi: https://doi.org/10.7316/KHNES.2020.31.6.530.
  2. N. E. Park and H. W. Kim, "Analysis of R&D investment for hydrogen and fuel cell", Journal of Hydrogen and New Energy, Vol. 21, No. 2, 2010, pp. 143-148. Retrieved from https://koreascience.kr/article/JAKO201027463260138.page. 1027463260138.page
  3. G. VanTien, Y. D. Lee, Y. S. Kim, and K. Y. Ahn, "Techno-economic analysis of reversible solid oxide fuel cell system couple with waste steam", Journal of Hydrogen and New Energy, Vol. 30, No. 1, 2019, pp. 21-28, doi: https://doi.org/10.7316/KHNES.2019.30.1.21.
  4. N.Zhou, C.Li, Q.Wang and D.Hao, "Study on the characteristics of SOFC operating in constant fuel flow and constant fuel utilization[J]". Renewable Energy, Vol .29, No. 6, 2011, pp.62-67, Retrieved from http://caod.oriprobe.com/articles/29105481/Study_on_the_characteristics_of_SOFC_operating_in_constant_fuel_flow_a.htm. 105481/Study_on_the_characteristics_of_SOFC_operating_in_constant_fuel_flow_a.htm
  5. M. Li, K. Duan, N. Djilali, and P. C. Sui, "Flow sharing and turbulence phenomena in proton exchange membrane fuel cell stack headers", International Journal of Hydrogen Energy, Vol. 44, No. 57, 2019, pp. 30306-30318, doi: https://doi.org/10.1016/j.ijhydene.2019.09.140.
  6. J. H. Koh, H. K. Seo, C. G. Lee, Y. S. Yoo, H. C. Lim, Y. S. Yoo, and H. C. Lim, "Pressure and flow distribution in internal gas manifolds of a fuel-cell stack", Journal of Power Sources, Vol. 115, No. 1, 2003, pp. 54-65, doi: https://doi.org/10.1016/S03787753(02)006158.
  7. W. Bi, D. Chen, and Z. Lin, "A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks", International Journal of Hydrogen Energy, Vol. 34, No. 9, 2009, pp. 38733884, doi: https://doi.org/10.1016/j.ijhydene.2009.02.071.
  8. B. Lin, Y. Shi, M. Ni, and N. Cai, "Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels", International Journal of Hydrogen Energy, Vol. 40, No. 7, 2015, pp. 3035-3047, doi: https://doi.org/10.1016/j.ijhydene.2014.12.088.
  9. B. Lin, Y. Shi, and N. Cai, "Numerical simulation of cell-to-cell performance variation within a syngas-fuelled planar solid oxide fuel cell stack", Applied Thermal Engineering, Vol. 114, 2017, pp. 653-662, doi: https://doi.org/10.1016/j.applthermaleng.2016.12.014.
  10. K. Wang, L. Wang, D. Yan, Y. S. Zhang, J. Pu, and L. Jian, "Investigation on flow distribution in an external manifold SOFC stack by computational fluid dynamics technique", Fuel Cells, Vol. 15, No. 1, 2015, pp. 61-70, doi: https://doi.org/10.1002/fuce.201400076.
  11. C. Zhao, J. Yang, T. Zhang, D. Yan, J. Pu, B. Chi, and J. Li, "Numerical simulation of flow distribution for external manifold design in solid oxide fuel cell stack", International Journal of Hydrogen Energy, Vol. 42, No. 10, 2017, pp. 7003-7013, doi: https://doi.org/10.1016/j.ijhydene.2016.12.009.
  12. R. Zamponi, S. Moreau, and C. Schram, "Rapid distortion theory of turbulent flow around a porous cylinder", Journal of Fluid Mechanics, Vol. 915, 2021, pp. A27, doi: https://doi.org/10.1017/jfm.2021.8.
  13. N. V. Nikitin, "Transition Problem and Localized Turbulent Structures in Pipes", Fluid Dynamics, Vol. 56, 2021, pp. 31-44, doi: https://doi.org/10.1134/S0015462821010092.
  14. R. S. Mitishita, J. A. MacKenzie, G. J. Elfring, and I. A. Frigaard, "Fully turbulent flows of viscoplastic fluids in a rectangular duct", Journal of Non-Newtonian Fluid Mechanics, Vol. 293, 2021, pp. 104570, doi: https://doi.org/10.1016/j.jnnfm.2021.104570.
  15. G. Yoo, H. Choi, and C. Kim, "Characteristics of turbulent flow distribution in branch piping system", Journal of Central South University, Vol. 19, 2012, pp. 3208-3214, doi: https://doi.org/10.1007/s1177101213973.
  16. C. Santarelli and J. Frohlich, "Direct numerical simulations of spherical bubbles in vertical turbulent channel flow", International Journal of Multiphase Flow, Vol. 75, 2015, pp. 174-193, doi: https://doi.org/10.1016/j.ijmultiphaseflow.2015.05.007.
  17. E. J. Finnemore and J. B. Franzini, "Fluid Mechanics with Engineering Applications", 10th ed, McGraw Hill, USA, 2002.
  18. Siemens, "STARCCM+ User's Guide 17.02", Siemens, 2021. Retrieved from https://www.plm.automation.siemens.com.