DOI QR코드

DOI QR Code

Teaching and learning about informal statistical inference using sampling simulation : A cultural-historical activity theory analysis

표집 시뮬레이션을 활용한 비형식적 통계적 추리의 교수-학습: 문화-역사적 활동이론의 관점에 따른 분석

  • Received : 2023.02.22
  • Accepted : 2023.03.27
  • Published : 2023.03.30

Abstract

This study examines the activity system of teaching and learning about informal statistical inference using sampling simulation, based on cultural-historical activity theory. The research explores what contradictions arise in the activity system and how the system changes as a result of these contradictions. The participants were 20 elementary school students in the 5th to 6th grades who received classes on informal statistical inference using sampling simulations. Thematic analysis was used to analyze the data. The findings show that a contradiction emerged between the rule and the object, as well as between the mediating artifact and the object. It was confirmed that visualization of empirical sampling distribution was introduced as a new artifact while resolving these contradictions. In addition, contradictions arose between the subject and the rule and between the rule and the mediating artifact. It was confirmed that an algorithm to calculate the mean of the sample means was introduced as a new rule while resolving these contradictions.

본 연구에서는 문화-역사적 활동이론에 기반하여, 표집 시뮬레이션을 활용한 비형식적 통계적 추리의 교수-학습 과정을 활동체계로 고려하고, 이러한 활동체계에서 발생하는 모순과 모순에 의한 변화를 확인하고자 하였다. 이를 위해 초등학생 5~6학년 20명을 대상으로 표집 시뮬레이션을 활용한 비형식적 통계적 추리에 대한 수업을 진행하고 활동체계를 분석하였다. 주제분석을 수행한 결과는 다음과 같다. 먼저, 규칙과 목표, 인공물과 목표 사이의 모순이 발생했으며, 이를 해결하는 과정에서 경험적 표집 분포의 시각화라는 새로운 인공물이 도입되는 것을 확인할 수 있었다. 또한, 규칙과 인공물, 규칙과 주체 사이의 모순이 발생했으며, 이를 해결하는 과정에서 표본 평균들의 평균을 구하는 알고리즘이 새로운 규칙으로 도입되는 것을 확인할 수 있었다.

Keywords

References

  1. 고은성, 탁병주. (2019). 점그래프와 상자그림의 교수학적 분석: 통계적 추리 지도를 위한 교육적 효용성 고찰. 수학교육학연구, 29(4), 577-605.
  2. 구나영, 탁병주, 강현영, 이경화. (2015). 표본 지도에 대한 고찰: 국외 교육 과정 분석을 중심으로. 학교수학, 17(3), 515-530.
  3. 김경희. (2011). 지식사회에서의 평생학습이론의 지향점: 엥스트롬의 확장학습이론 (Expansive Learning Theory) 을 중심으로. 평생교육학연구, 17(4), 293-321.
  4. 박민선, 고은성. (2014). 초등학교 4학년 학생들의 표집활동 분석: 사례연구. 학교수학, 16(3), 503-518.
  5. 박양주, 연은경. (2014). 문화-역사적 활동이론의 시각을 통한 교수, 학습 매체 도입, 활용 체제 분석-국내 A 원격대학 원격영상강의 시스템 사례를 중심으로. 한국교육공학회 학술대회발표자료집, 2014(1), 265-275.
  6. 성열관. (2018). 문화-역사적 문화-역사적 활동이론에서 모순 개념의 중요성. 교육비평, 42, 145-173.
  7. 신소연, 박철규, 이창윤, 홍훈기. (2018). 2015 개정교육과정의 '과학탐구실험' 실행에 대한 사례연구: 문화역사적 활동이론(CHAT) 측면에서의 이해, 한국과학교육 학회지, 38(6), 883-897.
  8. 신우진, 고호경, 노지화. (2022). 우리나라와 뉴질랜드의 고등학교 통계 교육과정 분석. 한국학교수학회논문집, 25(1), 19-38. https://doi.org/10.30807/KSMS.2022.25.1.002
  9. 이기돈. (2018). '닫힌 상자'에서의 복원추출에 의한 모비율 추측 활동수업 개발 및 적용. A-수학교육, 57(4), 413-431.
  10. 이종학. (2022). 초등수학 교과 기반 첨단 기술 및 ICT 교구 활용형 융합교육 자료 개발에 대한 사례 연구. 한국학교수학회논문집, 25(4), 333-352. https://doi.org/10.30807/KSMS.2022.25.4.002
  11. 이창윤, 박철규, 유수형, 홍훈기(2019). 자유학기제에서 중등 과학교사의 플립러닝 실행에 대한 문화역사적 활동이론 측면에서의 이해. 학습자중심교과교육연구, 19(5), 823-854.
  12. 이형상. (2018). Engestrom 의 활동 이론에 근거한 지리지식의 협력적 창출 분석. 한국지리환경교육학회지 (구 지리환경교육), 26(3), 73-90.
  13. 지영명. (2020). 비형식적 통계적 추리 지도를 위한 예비초등교사의 통계지식 연구. 서울대학교 박사 학위 논문
  14. 탁병주, 이경화. (2017). 우리나라 통계교육 연구의 동향 분석: 2000년 이후 발행된 국내 통계교육 연구논문을 중심으로. 수학교육학연구, 27(2), 269-289.
  15. Barab, S., Schatz, S., & Scheckler, R. (2004). Using activity theory to conceptualize online community and using online community to conceptualize activity theory. Mind, Culture, and Activity, 11(1), 25-47. https://doi.org/10.1207/s15327884mca1101_3
  16. Baran, B., & Cagiltay, K. (2010). The dynamics of online communities in the activity theory framework. J ournal of Educational Technology & Society, 13(4), 155-166.
  17. Braham, H. M., & Ben-Zvi, D. (2017). STUDENTS'EMERGENT ARTICULATIONS OF STATISTICAL MODELS AND MODELING IN MAKING INFORMAL STATISTICAL INFERENCES. Statistics Education Research J ournal, 16(2), 116-143. https://doi.org/10.52041/serj.v16i2.187
  18. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa
  19. Chance, B., delMas, R., & Garfield, J. (2010). 표집 분포에 대한 추론. In D. Ben-Zvi & J. Garfield (Eds.). 통계적 사고의 의미와 교육 (pp. 353-384). 서울: 경문사. (영어 원작은 2004년 출판).
  20. Cobb, G. (2007). The introductory statistics course: A Ptolemaic curriculum? Technology Innovations in Statistics Education, 1(1), Article 1. Retrieved from http://escholarship.org/uc/item/6hb3k0nz
  21. Creswell, J. W. (2010). 질적 연구방법론 : 다섯 가지 접근 (조흥식 역). 서울: 학지사. (영어 원작은 2013년 출판).
  22. Creswell. J. W. (2017). Research design: Qualitative, quantitative, and mixed methods. Sage Publications.
  23. Edwards, J. R. (2008). 4 person-environment fit in organizations: An assessment of theoretical progress. The academy of management annals, 2(1), 167-230. https://doi.org/10.5465/19416520802211503
  24. Engestrom, Y. (1999) Innovative learning in work teams: Analysing cycles of knowledge creation in work teams. In Engestrom, Y., Mietrinen, R. and Punamaki, R.L. (eds) Perspectives on activity theory, pp. 377-406. Cambridge University Press
  25. Engestrom, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of education and work, 14(1), 133-156. https://doi.org/10.1080/13639080020028747
  26. Engestrom, Y. (2005). Developmental work research: Expanding activity theory in practice (Vol. 12). Lehmanns media.
  27. Engestrom, Y. (2008). Weaving the texture of school change. J ournal of Educational Change, 9(4), 379-383. https://doi.org/10.1007/s10833-008-9086-6
  28. Engestrom, Y. (2009). Expansive learning: Toward an activity-theoretical reconceptualization. In K. Illeris (Ed.), Contemporary theories of learning: Learning theorists - In their own words. Routledge.
  29. Engestrom, Y., & Sannino, A. (2011). Discursive manifestations of contradictions in organizational change efforts. A methodological framework. Journal of Organizational Change Management, 24(3), 368-387. https://doi.org/10.1108/09534811111132758
  30. Engestrom, Y. (2015). Learning by expanding. Cambridge University Press.
  31. Fourcaud, T., Zhang, X., Stokes, A., Lambers, H., & Korner, C. (2008). Plant growth modelling and applications: the increasing importance of plant architecture in growth models. Annals of Botany, 101(8), 1053-1063.
  32. Garfield, J., & Ben-Zvi, D. (2008). Developing students' statistical reasoning: connecting research and teaching practice. New York: Springer.
  33. Hardman, J. (2015). Pedagogical variation with computers in mathematics classrooms: A cultural historical activity theory analysis. Psychology in Society, 48, 47-76) https://doi.org/10.17159/2309-8708/2015/n48a3
  34. Hatch, M. J. (1997). Irony and the social construction of contradiction in the humor of a management team. Organization Science, 8(3), 275-288. https://doi.org/10.1287/orsc.8.3.275
  35. Jaworski, B., & Potari, D. (2009). Bridging the macro-and micro-divide: Using an activity theory model to capture sociocultural complexity in mathematics teaching and its development. Educational Studies in Mathematics, 72, 219-236. https://doi.org/10.1007/s10649-009-9190-4
  36. Kader, G., & Jacobbe, T. (2019). 통계의 필수 이해: 6-8학년 (강현영, 이동환 역). 서울: 교우미디어. (영어 원작은 2013년 출판).
  37. Kaptelinin, V., & Nardi, B. A. (2006). Acting with technology: Activity theory and interaction design. MIT press.
  38. Karakus, T. (2013). Practices and potential of activity theory for educational technology research. In M. Spector, D. Merrill, J. Elen, & M. Bishop (Eds.), Handbook of Research on Educational Communications and Technology (pp. 151-160). New York, NY: Springer
  39. Kuutti, K. (1996). Activity theory as a potential framework for human-computer interaction research. In B. A. Nardi (Ed.), Context and consciousness: Activity theory and human-computer interaction. Cambridge, MA: MIT Press.
  40. Lane-Getaz, S. J. (2006). What is statistical thinking, and how is it developed. Thinking and reasoning about data and chance: Sixty-eighth NCTM Yearbook, 273-289.
  41. Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635-679
  42. Leont'ev, A. N. (1978). Activity, Conciosness, and personality. Englewood Cliffs: Prentice-Hall.
  43. Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education Research Journal, 8(1), 82-105. https://doi.org/10.52041/serj.v8i1.457
  44. Makar, K., Bakker, A., & Ben-Zvi, D. (2011). The reasoning behind informal statistical inference. Mathematical Thinking and Learning, 13(1-2), 152-173. https://doi.org/10.1080/10986065.2011.538301
  45. Molina-Toro, J. F., Rendon-Mesa, P. A., & Villa-Ochoa, J. A. (2022). Contradictions in mathematical modeling with digital technologies. Education and Information Technologies, 27(2), 1655-1673. https://doi.org/10.1007/s10639-021-10676-z
  46. Murphy, E., & Manzanares, M. A. R. (2008). Contradictions between the virtual and physical high school classroom: A third-generation Activity Theory perspective. British Journal of Educational Technology, 39(6), 1061-1072. https://doi.org/10.1111/j.1467-8535.2007.00776.x
  47. Murphy, E., & Rodriguez-Manzanares, M. A. (2008). Using activity theory and its principle of contradictions to guide research in educational technology. Australasian Journal of Educational Technology, 24(4), 442-457.
  48. Mwanza, D. (2001). Where theory meets practice: A case for an activity theory based methodology to guide computer system design. Proceedings of INTERACT' 2001: Eighth IFIP TC 13 Conference on Human-Computer Interaction.
  49. Pfannkuch, M. (2011). The role of context in developing informal statistical inferential reasoning: A classroom study. Mathematical Thinking and Learning, 13(1-2), 27-46. https://doi.org/10.1080/10986065.2011.538302
  50. Pfannkuch, M., Arnold, P., & Wild, C. J. (2015). What I see is not quite the way it really is: Students' emergent reasoning about sampling variability. Educational Studies in Mathematics, 88, 343-360. https://doi.org/10.1007/s10649-014-9539-1
  51. Pratt, D., & Ainley, J. (2008). Introducing the special issue on informal inferential reasoning. Statistics Education Research J ournal, 7(2), 3-4. https://doi.org/10.52041/serj.v7i2.466
  52. Rossman, A. (2008) Reasoning about informal statistical inference: One statistician's view. Statistics Education Research J ournal, 7(2), 5-19. https://doi.org/10.52041/serj.v7i2.467
  53. Roth, W. M., & Lee, Y. J. (2007). "Vygotsky's neglected legacy": Cultural-historical activity theory. Review of educational research, 77(2), 186-232. https://doi.org/10.3102/0034654306298273
  54. Roth, W. M., & Radford, L. (2011). A cultural-historical perspective on mathematics teaching and learning (Vol. 2). Springer science & business media.
  55. Sawchuk, P. H. (2003). Informal learning as a speech-exchange system: Implications for knowledge production, power and social transformation. Discourse & Society, 14(3), 291-307. https://doi.org/10.1177/0957926503014003083
  56. Shaughnessy, M. (2007). Research on statistics learning and reasoning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 957-1009). Charlotte, NC: Information Age Publishing.
  57. van Dijke-Droogers, M., Drijvers, P., & Bakker, A. (2020). Repeated sampling with a black box to make informal statistical inference accessible. Mathematical Thinking and Learning, 22(2), 116-138. https://doi.org/10.1080/10986065.2019.1617025
  58. Watkins, A. E., Bargagliotti, A., & Franklin, C. (2014). Simulation of the sampling distribution of the mean can mislead. Journal of Statistics Education, 22(3).
  59. Watson, J., & Chance, B. (2012). Building intuitions about statistical inference based on resampling. Australian Senior Mathematics J ournal, 26(1), 6-18.
  60. Watson, J. M., & English, L. D. (2016). Repeated random sampling in year 5. Journal of Statistics Education, 24(1), 27-37.
  61. Watson, J., Wright, S., Fitzallen, N., & Kelly, B. (2022). Consolidating understanding of variation as part of STEM: experimenting with plant growth. Mathematics Education Research Journal, 1-39.