DOI QR코드

DOI QR Code

배터리 제조공정에서 배출되는 잠재 유해 물질에 대한 물벼룩과 발광박테리아의 생태독성: 리튬, 니켈, 황산염을 대상으로

Ecotoxicity of Daphnia magna and Aliivibrio fischeri on Potentially Harmful Substances Emissionsfrom Battery Manufacturing Processes: Lithium, Nickel, and Sulfate

  • Inhye Roh (Southeast Medi-Chem Institute) ;
  • Kijune Sung (Department of Ecological Engineering, Pukyong National University)
  • 투고 : 2023.03.06
  • 심사 : 2023.04.17
  • 발행 : 2023.04.30

초록

이차전지 생산공정에서 발생한 폐수에는 리튬과 고농도의 황산염을 포함하고 있으며 최근에는 에너지 밀도가 높은 High Ni 계열의 전구체 수요가 급증하면서 니켈의 배출도 우려되는 상황이다. 리튬과 황산염의 경우 현재 수질오염물질 배출허용기준에 포함되어 있지 않으므로, 이들이 적절하게 처리되지 못하고 배출되었을 경우 향후 환경에 대한 부정적 영향이 클 수 있을 것으로 예상된다. 따라서 본 연구에서는 물벼룩(Daphnia magna)과 발광박테리아(Aliivibrio fischeri)를 이용하여 이차전지 생산공정 배출수에 포함되어 배출될 수 있는 잠재오염물질인 리튬과 니켈 및 황산염의 생태독성을 평가하였다. 생태독성평가 결과, 물벼룩 24시간, 48시간 리튬 EC50 값은 18.2mg/L, 14.5mg/L, 니켈의 경우 7.2mg/L와 5.4mg/L, 황산염 EC50 값은 4,605.5mg/L, 4,345.0mg/L로 나타나, 물벼룩의 경우 물질 및 반응시간(24시간, 48시간)에 따른 생태독성 차이가 있음을 알 수 있었다. 리튬, 니켈, 황산염에 대한 물벼룩의 EC50을 비교하면, 니켈의 24h 및 48h EC50은 리튬에 비해 39.6-37.2%, 황산염에 비해서는 0.1-0.2% 수준으로 세 물질 중 가장 독성이 강한 것으로 나타났다. 그 차이는 노출시간과 상관없이 유사한 수준으로 나타났다. 반면, 황산염의 EC50은 리튬과 니켈에 비해 각각 253.0-299.7%, 639.5-804.6% 수준으로 세물질 중 독성이 가장 약한 것으로 나타났다. 발광박테리아의 리튬에 대한 30분 EC50 값은 2,755.8mg/L, 니켈은 7.4mg/L, 황산염 EC50 값은 66,047.3mg/L로 니켈과는 달리 리튬과 황산염에 대한 물벼룩과 발광박테리아 생물 종별 민감도 차이도 있음을 확인하였다. 이차전지 배출수 관리를 위해 향후 이들 물질에 대한 복합 독성에 관한 연구가 필요할 것으로 판단된다.

Wastewater generated in the secondary battery production process contains lithium and high-concentration sulfate. Recently, as demand as demand for high-Ni precursors with high-energy density has surged, nickel emission is also a concern. Lithium and sulfate are not included in the current water pollutant discharge standard, so if they are not properly processed and discharged, the negative effect on future environment may be great. Therefore, in this study, the ecotoxicity of lithium, nickel, and sulfate, which are potential contaminants that can be discharged from the secondary battery production process, was evaluated using water flea (Daphnia magna) and luminescent bacteria (Aliivibrio fischeri). As a result of the ecotoxicity test, 24-hour and 48-hour D. magna EC50 values of lithium were 18.2mg/L and 14.5mg/L, nickel EC50 values were 7.2mg/L and 5.4mg/L, and sulfate EC50 values were 4,605.5mg/L and 4,345.0mg/L, respectively. In the case of D. magna, it was found that there was a difference in ecotoxicity according to the contaminants and exposure time (24 hours, 48 hours). Comparing the EC50 of D. magna for lithium, nickel, and sulfate, the EC50 of nickel at 24h and 48h was 39.6-37.2% compared to lithium and 0.1-0.2% compared to sulfate, which was the most toxic among the three substances. The difference appeared to be at a similarlevelregardless of the exposure time. The EC50 of sulfate was 253.0-299.7% and 639.5-804.6%, respectively, compared to lithium and nickel, showing the least toxicity among the three substances. The 30-minute EC50 values of luminescent bacteria forlithium, nickel, and sulfate were 2,755.8mg/L, 7.4mg/L, and 66,047.3mg/L,respectively. Unlike nickel, it was confirmed that there was a difference in sensitivity between D. magna and A. fischeri bacteria to lithium and sulfate. Studies on the mixture toxicity of these substances are needed.

키워드

참고문헌

  1. Abbas M, Adil M, Ehtisham-ul-Haque S, Munir B, Yameen M, Ghaffar A, Shar G, Tahir M, Iqbal M. 2018. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Science of the Total Environment 656: 1295-1309. https://doi.org/10.1016/j.scitotenv.2018.01.066
  2. Aral H, Vecchio-Sadus A. 2008. Toxicity of lithium to humans and the environment-A literature review. Ecotoxicol Environ Saf. 70: 349-356. https://doi.org/10.1016/j.ecoenv.2008.02.026
  3. Bozich J, Hang M, Hamers R, Klaper R. 2017. Core chemistry influences the toxicity of multicomponent metal oxide nanomaterials, lithium nickel manganese cobalt oxide and lithium cobalt oxide to Daphnia magna. Environ toxicol chem. 36(9): 2493-2502. https://doi.org/10.1002/etc.3791
  4. Choi H, Ryu J, Shin W, Nathalie V. 2019. The impact of anthropogenic inputs on lithium content in river and tap water. Nature Communications. 10: 5371.
  5. Elphick J, Davies M, Gilron G, Canaria E, Lo B, Bailey HC. 2011. An aquatic toxicological evaluation of sulfate:the case for considering hardness as a modifying factor in setting water quality guidelines. Environmental Toxicology and Chemistry. 30(1): 247-253. https://doi.org/10.1002/etc.363
  6. Environment Canada. 2000. Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna.
  7. European Chemicals Agency (ECHA). https://echa.europa.eu/registration-dossier/-/registered-dossier/5223/6/2/4
  8. Hsieh C, Tsai M, Ryan D, Pancorbo C. 2004. Toxicity of the 13 priority pollutant metals to Vibri fisheri in the Microtox® chronic toxicity test. The Science of the Total Environment 320: 37-50. https://doi.org/10.1016/S0048-9697(03)00451-0
  9. Hwang J. 2021. Technology and market trend of secondary battery. Auto Journal. 43(10): 31-35. [Korean Literature]
  10. Jakobsson E, Arguello-Miranda O, Chiu SW, Fazal Z, KruczK J, Nunez-Corrales S, Pandit S, Pritchet L. 2017. Towards a unified understanding of Lithium action in basic biology and its significance for applied biology. J Membr Biol. 250: 587-604. https://doi.org/10.1007/s00232-017-9998-2
  11. Jin Y, Kim BR, Kim DW. 2021. Correlation between lithium concentration and ecotoxicology in lithium contained waste water. Clean Technology 27(1): 33-38. [Korean Literature] https://doi.org/10.7464/KSCT.2021.27.1.33
  12. Karjalainen J, Makinen M, Karjalainen A. 2021. Sulfate toxicity to early life stages of European whitefish (Coregonus lavaretus) in soft freshwater. Ecotoxicology and Environmental Safety 208 :111763.
  13. Kim D, Chae Y, An Y. 2017. Mixture Toxicity of Nickel and Microplastics with different functional group on Daphnia magna. Enviro sci technol. 51: 12852-12858. https://doi.org/10.1021/acs.est.7b03732
  14. Kim J, Shin K, Yu S, Lee J, Kim W. 2015. Comparative study on acute toxicity of treated effluent containing salt using Daphnia magana and Vibrio fischeri. Journla of Korean Society on Water Environment 31(5): 453-459. [ Korean Literature] https://doi.org/10.15681/KSWE.2015.31.5.453
  15. KORES. 2016. Lithium market analysis report.
  16. Korea Ministry of Environment (KMOE). 2009a. Ecotoxicity management system for industrial wastewater. [Korean Literature]
  17. Korea Ministry of Environment (KMOE). 2009b. Research on the search for substances that cause ecotoxicity in industrial wastewater and reduction measures (II). [Korean Literature]
  18. Korea Ministry of Environment (KMOE), Korea Environment Corporation (KECO). 2011. Handbook for ecotoxicity management of class 3-5 wasterwater discharge facilities. [Korean Literature]
  19. Korea Ministry of Environment (KMOE). 2017. Standard testing method for water pollution. [Korean Literature]
  20. Korea Ministry of Oceans and Fisheries (KMOF). 2018. Standard testing method for maritime environment pollutant.
  21. Korea National Institute of Environmental Research (KNIER). 2013. Ecotoxicity analysis institute technical training materials.
  22. Lee K, Park G, KIM P. 2008. Development of Marine Toxicity Standard Method for Marine Luminescent Bacteria: Introduction of N-Tox test. Journal of the Korean Society of Oceanography 13(2): 156-163. [Korean Literature]
  23. Lee K, Kim J, Jo H, Song H, Cheon S, Seo D, Lee M, Lee J. 2022. Ecotoxicity assessment for monitoring hazardous substances on Vibrio fischeri. Jorunal of Korean society of Marne, Environment, Energy. 25(4): 217-222. [Korean Literature] https://doi.org/10.7846/JKOSMEE.2022.25.4.217
  24. Mano H, Shinohara N. 2020. Acute toxicity of nickel to Daphina magana: validation of bioavailability models in Japanese rivers. Water Air and Pollution. 231(459).
  25. Michalaki A, McGivern A, Poschet G, Buttner M, Altenburger R, Grintzalis K. 2022. The effects of single and combined stressors on Daphnids-Enzyme markers of physiology and metabolomics validate the impact of pollution. Toxins 10: 604.
  26. Okamoto A, Yamamuro M, Tatarazao N. 2014. Acute toxicity of 50 metals to Daphnia agna. J. Appl Toxicol. 35: 824-830. https://doi.org/10.1002/jat.3078
  27. Park S, Seo J, Kim T. 2018. Environmental impacts of brine from the seawater desalination plants. Journal of Environment Impact Assessment. 27(1): 17-32. [Korean Literature]
  28. Park MJ, Jun DJ, Kang SG. 2021. Korean secondary battery industrial ecosystm. Journal of the Korean Battery Society. 1(2): 85-88. [Korean Literature] https://doi.org/10.53619/KOBS.2021.12.1.2.85
  29. Pereira CMS, Deruytter D, Blust R, De Schamphelaere KAC. 2016. Effet of temperature on chronic toxicity of copper, zinc, and nickel to Daphnia magna. Environ toxicol chem. 36(7): 1909-1916. https://doi.org/10.1002/etc.3714
  30. Posco Research Institute (POSRI). 2018. Lithium supply and demand outlook in 2025. [Korean Literature]
  31. Posco Research Institute (POSRI). 2019. 7 major issues in the global lithium industry. [Korean Literature]
  32. Thibon F, Weppe L, Nigier N, Churlaud C, Lacoue-Labarthe T, Metian M, Cherel Y, Bustamante P. 2021. Large-scale survey of lithium concentrations in marine organisms. Science of the Total Environment 751(141453).
  33. Viana T, Ferreira N, Henriques B, Leite C, Marchi L, Amaral J, Freitas R, Pereira E. 2020. How safe are the new green energy resources for marine wildlife? The case of lithium. Environmental Pollution 267: 1-9. https://doi.org/10.1016/j.envpol.2020.115458
  34. Wang Z, Yeung K, Zhou G, Yung M, Schlekat C, Garman E, Gissi F, Stauber J, Middleton E, Wang Y, Leung K. 2020. Acute and chronic toxicity of nickel on freshwater and marine tropical aquatic organisms. Ecotoxicology and Environmental Safety. 206: 111373.