Acknowledgement
본 결과물은 환경부의 재원으로 한국환경산업기술원의 생물다양성 위협 외래생물 관리 기술개발사업의 지원을 받아 연구되었습니다(2021002280001).
References
- Czegledi I, Saly P, Specziar A, Preiszner B, Szaloky Z, Maroda A, Pont D, Meulenbroek P, Valentini A, Eros T. 2021. Congruency between two traditional and eDNA-based sampling methods in characterising taxonomic and trait-based structure of fish communities and community-environment relationships in lentic environment. Ecol Indic. 129. https://doi.org/10.1016/j.ecolind.2021.107952
- Deiner K, Altermatt F. 2014. Transport Distance of Invertebrate Environmental DNA in a Natural River. PLoS One 9, e88786. https://doi.org/10.1371/JOURNAL.PONE.0088786
- Dorazio RM, Erickson RA. 2018. ednaoccupancy: An r package for multiscale occupancy modelling of environmental DNA data. Mol Ecol Resour [Internet]. [accessed 2022 Jul 8] 18(2): 368-380. https://doi.org/10.1111/1755-0998.12735
- Gang HS, I BG, Han DH, G HR, Jo SC, Gim TH. 2015. A Study on the Management and Utilization of the Saetgang Stream in the Han River. Korea Environment Institute. https://doi.org/10.23000/TRKO201800014468 [Korean Literature]
- Hashemzadeh Segherloo I, Tabatabaei SN, Abdolahi-Mousavi E, Hernandez C, Normandeau E, Laporte M, Boyle B, Amiri M, GhaedRahmati N, Hallerman E, Bernatchez L. 2022. eDNA metabarcoding as a means to assess distribution of subterranean fish communities: Iranian blind cave fishes as a case study. Environmental DNA [Internet]. [accessed 2022 Oct 23] 4(2): 402-416. https://doi.org/10.1002/EDN3.264
- Information of Korean Alien Specie [Internet]. c 2001-2022. National Institute of Ecology; [Cited January 10, 2023]. Available from: https://kias.nie.re.kr/home/for/for02002v.do?clsSno=20700&searchClsGbn=for
- Rourke ML, Fowler AM, Hughes JM, Broadhurst MK, DiBattista JD, Fielder S, Wilkes WJ, Furlan EM. 2022. Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA, 4(1), 9-33. https://doi.org/10.1002/EDN3.185
- Kakuda A, Doi H, Souma R, Nagano M, Minamoto T, Katano I. 2019. Environmental DNA detection and quantification of invasive red-eared sliders, Trachemy scripta elegans, in ponds and the influence of water quality. PeerJ. 2019(12): 1-19. https://doi.org/10.7717/peerj.8155
- Kim GW, Song YK. 2021. Identification of Freshwater Fish Species in Korea Using Environmental DNA Technique-From the Experiment at the Freshwater Fish Ecological Learning Center in Yangpyeong, Gyeonggi Do. J Environ Impact Assess [Internet]. [accessed 2022 Jul 2] 30(1): 1-12. https://doi.org/10.14249/eia.2021.30.1.1 [Korean Literature]
- Kim JH, Jo H, Chang MH, Woo SH, Cho Y, Yoon JD. 2020. Application of Environmental DNA for Monitoring of Freshwater Fish in Korea. Korean Journal of Ecology and Environment 53(1): 63-72. https://doi.org/10.11614/ksl.2020.53.1.063 [Korean Literature]
- Leempoel K, Hebert T, Hadly EA. 2020. A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. Proceedings of the Royal Society B [Internet]. [accessed 2022 Sep 3] 287(1918). https://doi.org/10.1098/RSPB.2019.2353
- Li F, Peng Y, Fang W, Altermatt F, Xie Y, Yang J, Zhang X. 2018. Application of Environmental DNA Metabarcoding for Predicting Anthropogenic Pollution in Rivers [Internet]. [accessed 2020 Aug 12]. https://doi.org/10.1021/acs.est.8b03869
- Lintermans M. 2016. Finding the needle in the haystack: Comparing sampling methods for detecting an endangered freshwater fish. Marine and Freshwater Research 67(11): 1740-1749. https://doi.org/10.1071/MF14346
- Lozano Mojica JD, Caballero S. 2021. Applications of eDNA Metabarcoding for Vertebrate Diversity Studies in Northern Colombian Water Bodies. Front Ecol Evol. 8. https://doi.org/10.3389/fevo.2020.617948
- Minamoto T, Yamanaka H, Takahara T, Honjo MN, Kawabata Z. 2012. Surveillance of fish species composition using environmental DNA. Limnology (Tokyo). 13(2): 193-197. https://doi.org/10.1007/s10201-011-0362-4
- University. http://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202200004244 [Korean Literature]
- Ministry of Environment. 2022. Act On the Conservation And Use of Biological Diversity [Internet]. [accessed 2022 Oct 23]. https://law.go.kr/%ED%96%89%EC%A0%95%EA%B7%9C%EC%B9%99/%EC%83%9D%ED%83%9C%EA%B3%84%EA%B5%90%EB%9E%80%EC%83%9D%EB%AC%BC%EC%A7%80%EC%A0%95%EA%B3%A0%EC%8B%9C [Korean Literature]
- Ministry of Environment. 2017a. 4th National Natural Environment Survey: Ichthyofauna from midstream catchment of Anyang stream [Internet]. https://www.nie-ecobank.kr/ecoki/bitstream/2018.oak/4610/1/안양천상류_101814_어류.pdf [Korean Literature]
- Ministry of Environment. 2017b. 4th National Natural Environment Survey: Ichthyofauna from midstream catchment of Anyang stream [Internet]. https://www.nieecobank.kr/ecoki/bitstream/2018.oak/4611/1/안양천중류_101815_어류.pdf [Korean Literature]
- Ministry of Environment. 2019. The 2nd Alien Speices Management Plan (2019-2023) [Internet]. [accessed 2022 Oct 23]: 1-77. https://kias.nie.re.kr/home/bbs/bbs01002v.do?bbsSno=11191&bbsManSno=1 [Korean Literature]
- Ministry of Environment. 2022. Developing a real-time web-based positioning surveillance system customized for introduced exotic species [Internet]. Seoul National
- Mizumoto H, Kishida O, Takai K, Matsuura N, Araki H. 2022. Utilizing environmental DNA for wide-range distributions of reproductive area of an invasive terrestrial toad in Ishikari river basin in Japan. Biol Invasions [Internet]. [accessed 2022 Oct 23] 24(4): 1199-1211.https://doi.org/10.1007/S10530-021-02709-Y/FIGURES/3
- Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H, Kondoh M, Iwasaki W. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci 2, 150088. https://doi.org/10.1098/rsos.150088
- Muha TP, Rodriguez-Rey M, Rolla M, Tricarico E. 2017. Using environmental DNA to improve species distribution models for freshwater invaders. Front Ecol Evol [Internet]. [accessed 2021 May 12] 5(DEC): 158. https://doi.org/10.3389/fevo.2017.00158
- Murakami H, Yoon S, Kasai A, Minamoto T, Yamamoto S, Sakata MK, Horiuchi T, Sawada H, Kondoh M, Yamashita Y, Masuda R. 2019. Dispersion and degradation of environmental DNA from caged fish in a marine environment. Fisheries Science 85: 327-337. https://doi.org/10.1007/S12562-018-1282-6/FIGURES/7
- Nevers MB, Przybyla-Kelly K, Shively D, Morris CC, Dickey J, Byappanahalli MN, 2020. Influence of sediment and stream transport on detecting a source of environmental DNA. PLoS One 15, e0244086. https://doi.org/10.1371/JOURNAL.PONE.0244086
- Di MC, Handley LL, Bean CW, Li J, Peirson G, Sellers GS, Walsh K, Watson HV, Winfield IJ, Hanfling B. 2020. Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds. Metabarcoding Metagenom. 4: 97-112. https://doi.org/10.3897/MBMG.4.56959
- Rubenson ES, Olden JD. 2020. An invader in salmonid rearing habitat: Current and future distributions of smallmouth bass (micropterus dolomieu) in the Columbia river basin. Canadian Journal of Fisheries and Aquatic Sciences [Internet]. [accessed 2022 Oct 15] 77(2): 314-325. https://doi.org/10.1139/CJFAS-2018-0357/SUPPL_FILE/CJFAS-2018-0357SUPPLA.PDF
- Saenz-Agudelo P, Delrieu-Trottin E, DiBattista JD, Martinez-Rincon D, Morales-Gonzalez S, Pontigo F, Ramirez P, Silva A, Soto M, Correa C. 2022. Monitoring vertebrate biodiversity of a protected coastal wetland using eDNA metabarcoding. Environmental DNA 4(1): 77-92. https://doi.org/10.1002/edn3.200
- Sard NM, Herbst SJ, Nathan L, Uhrig G, Kanefsky J, Robinson JD, Scribner KT. 2019. Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears. Environmental DNA 1(4): 368-384. https://doi.org/10.1002/edn3.38
- Sato Y, Miya M, Fukunaga T, Sado T, Iwasaki W. 2018. MitoFish and MiFish Pipeline: A Mitochondrial Genome Database of Fish with an Analysis Pipeline for Environmental DNA Metabarcoding. Mol Biol Evol [Internet]. [accessed 2022 Sep 30] 35(6): 1553-1555. https://doi.org/10.1093/MOLBEV/MSY074
- Smart AS, Tingley R, Weeks AR, van Rooyen AR, McCarthy MA. 2015. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications [Internet]. [accessed 2021 Jan 26] 25(7): 1944-1952. https://doi.org/10.1890/14-1751.1
- Song YK, Kim JH, Won SY, Park C. 2019. Possibility in identifying species composition of fish communities using the environmental DNA metabarcoding technique-with the preliminary results at urban. Journal of the Korean Society of Environmental Restoration Technology [Internet]. [accessed 2021 Feb 1] 22(6): 125-138. https://www.koreascience.or.kr/article/JAKO201911959029438.page [Korean Literature]
- Stewart KA. 2019. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodiversity and Conservation 2019 28:5 28, 983-1001. https://doi.org/10.1007/S10531-019-01709-8
- Stoeckle BC, Beggel S, Kuehn R, Geist J. 2021. Influence of stream characteristics and population size on downstream transport of freshwater mollusk environmental dna. Freshwater Science 40: 191-201. https://doi.org/10.1086/713015/ASSET/IMAGES/LARGE/FG3.JPEG
- Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z. 2012. Estimation of Fish Biomass Using Environmental DNA. PLoS One 7, e35868. https://doi.org/10.1371/journal.pone.0035868
- Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E. 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol [Internet]. [accessed 2021 Sep 30] 21(11): 2565-2573. https://doi.org/10.1111/J.1365-294X.2011.05418.X
- Thomsen PF, Willerslev E. 2015. Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv. 183: 4-18. https://doi.org/10.1016/j.biocon.2014.11.019
- Ushio M, Fukuda H, Inoue T, Makoto K, Kishida O, Sato K, Murata K, Nikaido M, Sado T, Sato Y, et al. 2017. Environmental DNA enables detection of terrestrial mammals from forest pond water. Mol Ecol Resour [Internet]. [accessed 2021 Feb 1] 17(6): e63-e75. https://doi.org/10.1111/1755-0998.12690
- Ushio M, Murata K, Sado T, Nishiumi I, Takeshita M, Iwasaki W, Miya M. 2018. Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Sci Rep [Internet]. [accessed 2021 Mar 28] 8(1): 1-10. https://doi.org/10.1038/s41598-018-22817-5
- Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F, et al. 2016. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol. 25(4): 929-942. https://doi.org/10.1111/mec.13428
- Vila M, Basnou C, Gollasch S, Josefsson M, Pergl J, Scalera R. 2009. One Hundred of the Most Invasive Alien Species in Europe. Handbook of Alien Species in Europe [Internet]. [accessed 2022 Oct 23]: 265-268. https://doi.org/10.1007/978-1-4020-8280-1_12
- Williams KE, Huyvaert KP, Vercauteren KC, Davis AJ, Piaggio AJ. 2018. Detection and persistence of environmental DNA from an invasive, terrestrial mammal. Ecol Evol [Internet]. [accessed 2021 Jan 23] 8(1): 688-695. https://doi.org/10.1002/ece3.3698
- Yamamoto S, Masuda R, Sato Y, Sado T, Araki H, Kondoh M, Minamoto T, Miya M. 2017. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports 2017 7:1 [Internet]. [accessed 2022 Oct 5] 7(1): 1-12. https://doi.org/10.1038/srep40368
- Yates MC, Fraser DJ, Derry AM. 2019. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environmental DNA 1(1): 5-13. https://doi.org/10.1002/EDN3.7
- Yeoungdeungpo cultural foundation. 2020. A Study on the Basic Environment of Waterfront Ecological Culture for the Development of Waterfront Culture Revitalization Plan. Seoul. [Korean Literature]
- Yu Z, Ito SI, Wong MKS, Yoshizawa S, Inoue J, Itoh S, Yukami R, Ishikawa K, Guo C, Ijichi M, Hyodo S. 2022. Comparison of species-specific qPCR and metabarcoding methods to detect small pelagic fish distribution from open ocean environmental DNA. PLOS ONE, 17(9), e0273670. https://doi.org/10.1371/JOURNAL.PONE.0273670