DOI QR코드

DOI QR Code

Feasibility of Environmental DNA Metabarcoding for Invasive Species Detection According to Taxa

분류군별 외래생물 탐지를 위한 환경 DNA 메타바코딩 활용 가능성

  • Yujin Kang (Interdisciplinary Program in Landscape Architecture, Seoul National University) ;
  • Jeongeun Jeon (Dept. of Landscape Architecture, Graduate School of Environmental Studies, Seoul National University) ;
  • Seungwoo Han (Interdisciplinary Program in Landscape Architecture, Seoul National University) ;
  • Suyeon Won (Interdisciplinary Program in Landscape Architecture, Seoul National University) ;
  • Youngkeun Song (Dept. of Landscape Architecture, Graduate School of Environmental Studies, Seoul National University)
  • 강유진 (서울대학교 협동과정조경학) ;
  • 전정은 (서울대학교 환경대학원 환경조경학과) ;
  • 한승우 (서울대학교 협동과정조경학) ;
  • 원수연 (서울대학교 협동과정조경학) ;
  • 송영근 (서울대학교 환경대학원 환경조경학과)
  • Received : 2023.02.06
  • Accepted : 2023.03.10
  • Published : 2023.04.30

Abstract

In order to establish an effective management strategy for invasive species early detection and regular monitoring are required to assess their introduction or dispersal. Environmental DNA (eDNA) is actively applied to evaluate the fauna including the presence of invasive species as it has high detection sensitivity and can detect multiple species simultaneously. In Korea, the applicability evaluation of metabarcoding is being conducted mainly on fish, and research on other taxa is insufficient. Therefore, this study identified the feasibility of detecting invasive species in Korea using eDNA metabarcoding. In addition, to confirm the possibility of detection by taxa, the detection of target species was evaluated using four universal primers (MiFish, MiMammal, Mibird, Amp16S) designed for fish, mammals, birds, and amphibians. As a result, target species (Trachemys scripta, 3 sites; Cervus nippon, 3 sites; Micropterus salmoides, 7 sites; Rana catesbeiana, 4 sites) were detected in 17 of the total 55 sites. Even in the selection of dense sampling sites within the study area, there was a difference in the detection result by reflecting the ecological characteristics of the target species. A comparison of community structures (species richness, abundance and diversity) based on the presence of invasive species focused on M.salmoides and T.scripta, showed higher diversity at the point where invasive species were detected. Also, 1 to 4 more species were detected and abundance was also up to 1.7 times higher. The results of invasive species detection through metabarcoding and the comparison of community structures indicate that the accumulation of large amounts of monitoring data through eDNA can be efficiently utilized for multidimensional ecosystem evaluation. In addition, it suggested that eDNA can be used as major data for evaluation and prediction, such as tracking biological changes caused by artificial and natural factors and environmental impact assessment.

효과적인 외래생물 관리 전략 수립을 위해서는 도입 및 확산 여부 평가를 위한 정기 모니터링이 요구된다. 환경 DNA (eDNA, environmental DNA) 메타바코딩은 높은 검출 민감도를 가지고 다수의 종을 동시에 검출할 수 있어 외래생물의 출현 여부와 그 영향을 평가하는데 활발히 활용되고 있다. 국내에서는 어류를 중심으로 메타바코딩의 적용 가능성 평가가 이루어지고 있으며 타 분류군에 대한 연구는 부족한 실정이다. 따라서 본 연구에서는 환경 DNA 메타바코딩을 활용한 국내 외래생물 탐지 가능성을 확인하고자 했다. 분류군별 검출 가능성을 확인하기 위해 어류, 포유류, 조류, 양서류를 목표로 디자인 된 4가지 범용 프라이머(MiFish, MiMammal, Mibird, Amp16S)를 활용하여 대상종 검출 여부를 평가하였다. 그 결과, 총 55개 지점 중 17개 지점(Trachemys scripta, 3개 지점; Cervus nippon, 3개 지점; Micropterus salmoides, 7개 지점; Rana catesbeiana, 4개 지점)에서 대상종의 서식이 확인되었다. 대상지 내 조밀한 지점 선정에도 생태적 특성을 반영한 검출 지점에 차이가 나타났다. 큰입배스와 붉은귀거북을 중심으로 외래생물이 출현이 생물 군집구조(종 풍부도, 풍부도, 다양도)에 미치는 영향을 비교한 결과, 외래생물이 서식하는 지점에서의 다양도가 더 높게 나타났다. 또한 외래생물 출현 지점에서 출현 종 수가 1~4종 추가 검출되었으며 풍부도 또한 1.7배 높게 나타났다. 메타바코딩을 통한 외래생물 검출 결과 및 군집구조 비교는 eDNA를 통한 다량의 모니터링 데이터 구축이 다차원적 생태계 평가에 효율적으로 활용될 수 있음을 나타냈다. 또한 환경의 인위적, 자연적 변화에 따른 생물상 변화를 관찰하고 자연생태 분야의 환경영향평가 등 현황 평가 및 예측을 위한 주요한 기초자료로 활용 가능성을 제시하였다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 생물다양성 위협 외래생물 관리 기술개발사업의 지원을 받아 연구되었습니다(2021002280001).

References

  1. Czegledi I, Saly P, Specziar A, Preiszner B, Szaloky Z, Maroda A, Pont D, Meulenbroek P, Valentini A, Eros T. 2021. Congruency between two traditional and eDNA-based sampling methods in characterising taxonomic and trait-based structure of fish communities and community-environment relationships in lentic environment. Ecol Indic. 129. https://doi.org/10.1016/j.ecolind.2021.107952
  2. Deiner K, Altermatt F. 2014. Transport Distance of Invertebrate Environmental DNA in a Natural River. PLoS One 9, e88786. https://doi.org/10.1371/JOURNAL.PONE.0088786
  3. Dorazio RM, Erickson RA. 2018. ednaoccupancy: An r package for multiscale occupancy modelling of environmental DNA data. Mol Ecol Resour [Internet]. [accessed 2022 Jul 8] 18(2): 368-380. https://doi.org/10.1111/1755-0998.12735
  4. Gang HS, I BG, Han DH, G HR, Jo SC, Gim TH. 2015. A Study on the Management and Utilization of the Saetgang Stream in the Han River. Korea Environment Institute. https://doi.org/10.23000/TRKO201800014468 [Korean Literature]
  5. Hashemzadeh Segherloo I, Tabatabaei SN, Abdolahi-Mousavi E, Hernandez C, Normandeau E, Laporte M, Boyle B, Amiri M, GhaedRahmati N, Hallerman E, Bernatchez L. 2022. eDNA metabarcoding as a means to assess distribution of subterranean fish communities: Iranian blind cave fishes as a case study. Environmental DNA [Internet]. [accessed 2022 Oct 23] 4(2): 402-416. https://doi.org/10.1002/EDN3.264
  6. Information of Korean Alien Specie [Internet]. c 2001-2022. National Institute of Ecology; [Cited January 10, 2023]. Available from: https://kias.nie.re.kr/home/for/for02002v.do?clsSno=20700&searchClsGbn=for
  7. Rourke ML, Fowler AM, Hughes JM, Broadhurst MK, DiBattista JD, Fielder S, Wilkes WJ, Furlan EM. 2022. Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA, 4(1), 9-33. https://doi.org/10.1002/EDN3.185
  8. Kakuda A, Doi H, Souma R, Nagano M, Minamoto T, Katano I. 2019. Environmental DNA detection and quantification of invasive red-eared sliders, Trachemy scripta elegans, in ponds and the influence of water quality. PeerJ. 2019(12): 1-19. https://doi.org/10.7717/peerj.8155
  9. Kim GW, Song YK. 2021. Identification of Freshwater Fish Species in Korea Using Environmental DNA Technique-From the Experiment at the Freshwater Fish Ecological Learning Center in Yangpyeong, Gyeonggi Do. J Environ Impact Assess [Internet]. [accessed 2022 Jul 2] 30(1): 1-12. https://doi.org/10.14249/eia.2021.30.1.1 [Korean Literature]
  10. Kim JH, Jo H, Chang MH, Woo SH, Cho Y, Yoon JD. 2020. Application of Environmental DNA for Monitoring of Freshwater Fish in Korea. Korean Journal of Ecology and Environment 53(1): 63-72. https://doi.org/10.11614/ksl.2020.53.1.063 [Korean Literature]
  11. Leempoel K, Hebert T, Hadly EA. 2020. A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. Proceedings of the Royal Society B [Internet]. [accessed 2022 Sep 3] 287(1918). https://doi.org/10.1098/RSPB.2019.2353
  12. Li F, Peng Y, Fang W, Altermatt F, Xie Y, Yang J, Zhang X. 2018. Application of Environmental DNA Metabarcoding for Predicting Anthropogenic Pollution in Rivers [Internet]. [accessed 2020 Aug 12]. https://doi.org/10.1021/acs.est.8b03869
  13. Lintermans M. 2016. Finding the needle in the haystack: Comparing sampling methods for detecting an endangered freshwater fish. Marine and Freshwater Research 67(11): 1740-1749. https://doi.org/10.1071/MF14346
  14. Lozano Mojica JD, Caballero S. 2021. Applications of eDNA Metabarcoding for Vertebrate Diversity Studies in Northern Colombian Water Bodies. Front Ecol Evol. 8. https://doi.org/10.3389/fevo.2020.617948
  15. Minamoto T, Yamanaka H, Takahara T, Honjo MN, Kawabata Z. 2012. Surveillance of fish species composition using environmental DNA. Limnology (Tokyo). 13(2): 193-197. https://doi.org/10.1007/s10201-011-0362-4
  16. University. http://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202200004244 [Korean Literature]
  17. Ministry of Environment. 2022. Act On the Conservation And Use of Biological Diversity [Internet]. [accessed 2022 Oct 23]. https://law.go.kr/%ED%96%89%EC%A0%95%EA%B7%9C%EC%B9%99/%EC%83%9D%ED%83%9C%EA%B3%84%EA%B5%90%EB%9E%80%EC%83%9D%EB%AC%BC%EC%A7%80%EC%A0%95%EA%B3%A0%EC%8B%9C [Korean Literature]
  18. Ministry of Environment. 2017a. 4th National Natural Environment Survey: Ichthyofauna from midstream catchment of Anyang stream [Internet]. https://www.nie-ecobank.kr/ecoki/bitstream/2018.oak/4610/1/안양천상류_101814_어류.pdf [Korean Literature]
  19. Ministry of Environment. 2017b. 4th National Natural Environment Survey: Ichthyofauna from midstream catchment of Anyang stream [Internet]. https://www.nieecobank.kr/ecoki/bitstream/2018.oak/4611/1/안양천중류_101815_어류.pdf [Korean Literature]
  20. Ministry of Environment. 2019. The 2nd Alien Speices Management Plan (2019-2023) [Internet]. [accessed 2022 Oct 23]: 1-77. https://kias.nie.re.kr/home/bbs/bbs01002v.do?bbsSno=11191&bbsManSno=1 [Korean Literature]
  21. Ministry of Environment. 2022. Developing a real-time web-based positioning surveillance system customized for introduced exotic species [Internet]. Seoul National
  22. Mizumoto H, Kishida O, Takai K, Matsuura N, Araki H. 2022. Utilizing environmental DNA for wide-range distributions of reproductive area of an invasive terrestrial toad in Ishikari river basin in Japan. Biol Invasions [Internet]. [accessed 2022 Oct 23] 24(4): 1199-1211.https://doi.org/10.1007/S10530-021-02709-Y/FIGURES/3
  23. Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H, Kondoh M, Iwasaki W. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci 2, 150088. https://doi.org/10.1098/rsos.150088
  24. Muha TP, Rodriguez-Rey M, Rolla M, Tricarico E. 2017. Using environmental DNA to improve species distribution models for freshwater invaders. Front Ecol Evol [Internet]. [accessed 2021 May 12] 5(DEC): 158. https://doi.org/10.3389/fevo.2017.00158
  25. Murakami H, Yoon S, Kasai A, Minamoto T, Yamamoto S, Sakata MK, Horiuchi T, Sawada H, Kondoh M, Yamashita Y, Masuda R. 2019. Dispersion and degradation of environmental DNA from caged fish in a marine environment. Fisheries Science 85: 327-337. https://doi.org/10.1007/S12562-018-1282-6/FIGURES/7
  26. Nevers MB, Przybyla-Kelly K, Shively D, Morris CC, Dickey J, Byappanahalli MN, 2020. Influence of sediment and stream transport on detecting a source of environmental DNA. PLoS One 15, e0244086. https://doi.org/10.1371/JOURNAL.PONE.0244086
  27. Di MC, Handley LL, Bean CW, Li J, Peirson G, Sellers GS, Walsh K, Watson HV, Winfield IJ, Hanfling B. 2020. Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds. Metabarcoding Metagenom. 4: 97-112. https://doi.org/10.3897/MBMG.4.56959
  28. Rubenson ES, Olden JD. 2020. An invader in salmonid rearing habitat: Current and future distributions of smallmouth bass (micropterus dolomieu) in the Columbia river basin. Canadian Journal of Fisheries and Aquatic Sciences [Internet]. [accessed 2022 Oct 15] 77(2): 314-325. https://doi.org/10.1139/CJFAS-2018-0357/SUPPL_FILE/CJFAS-2018-0357SUPPLA.PDF
  29. Saenz-Agudelo P, Delrieu-Trottin E, DiBattista JD, Martinez-Rincon D, Morales-Gonzalez S, Pontigo F, Ramirez P, Silva A, Soto M, Correa C. 2022. Monitoring vertebrate biodiversity of a protected coastal wetland using eDNA metabarcoding. Environmental DNA 4(1): 77-92. https://doi.org/10.1002/edn3.200
  30. Sard NM, Herbst SJ, Nathan L, Uhrig G, Kanefsky J, Robinson JD, Scribner KT. 2019. Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears. Environmental DNA 1(4): 368-384. https://doi.org/10.1002/edn3.38
  31. Sato Y, Miya M, Fukunaga T, Sado T, Iwasaki W. 2018. MitoFish and MiFish Pipeline: A Mitochondrial Genome Database of Fish with an Analysis Pipeline for Environmental DNA Metabarcoding. Mol Biol Evol [Internet]. [accessed 2022 Sep 30] 35(6): 1553-1555. https://doi.org/10.1093/MOLBEV/MSY074
  32. Smart AS, Tingley R, Weeks AR, van Rooyen AR, McCarthy MA. 2015. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications [Internet]. [accessed 2021 Jan 26] 25(7): 1944-1952. https://doi.org/10.1890/14-1751.1
  33. Song YK, Kim JH, Won SY, Park C. 2019. Possibility in identifying species composition of fish communities using the environmental DNA metabarcoding technique-with the preliminary results at urban. Journal of the Korean Society of Environmental Restoration Technology [Internet]. [accessed 2021 Feb 1] 22(6): 125-138. https://www.koreascience.or.kr/article/JAKO201911959029438.page [Korean Literature]
  34. Stewart KA. 2019. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodiversity and Conservation 2019 28:5 28, 983-1001. https://doi.org/10.1007/S10531-019-01709-8
  35. Stoeckle BC, Beggel S, Kuehn R, Geist J. 2021. Influence of stream characteristics and population size on downstream transport of freshwater mollusk environmental dna. Freshwater Science 40: 191-201. https://doi.org/10.1086/713015/ASSET/IMAGES/LARGE/FG3.JPEG
  36. Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z. 2012. Estimation of Fish Biomass Using Environmental DNA. PLoS One 7, e35868. https://doi.org/10.1371/journal.pone.0035868
  37. Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E. 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol [Internet]. [accessed 2021 Sep 30] 21(11): 2565-2573. https://doi.org/10.1111/J.1365-294X.2011.05418.X
  38. Thomsen PF, Willerslev E. 2015. Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv. 183: 4-18. https://doi.org/10.1016/j.biocon.2014.11.019
  39. Ushio M, Fukuda H, Inoue T, Makoto K, Kishida O, Sato K, Murata K, Nikaido M, Sado T, Sato Y, et al. 2017. Environmental DNA enables detection of terrestrial mammals from forest pond water. Mol Ecol Resour [Internet]. [accessed 2021 Feb 1] 17(6): e63-e75. https://doi.org/10.1111/1755-0998.12690
  40. Ushio M, Murata K, Sado T, Nishiumi I, Takeshita M, Iwasaki W, Miya M. 2018. Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Sci Rep [Internet]. [accessed 2021 Mar 28] 8(1): 1-10. https://doi.org/10.1038/s41598-018-22817-5
  41. Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F, et al. 2016. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol. 25(4): 929-942. https://doi.org/10.1111/mec.13428
  42. Vila M, Basnou C, Gollasch S, Josefsson M, Pergl J, Scalera R. 2009. One Hundred of the Most Invasive Alien Species in Europe. Handbook of Alien Species in Europe [Internet]. [accessed 2022 Oct 23]: 265-268. https://doi.org/10.1007/978-1-4020-8280-1_12
  43. Williams KE, Huyvaert KP, Vercauteren KC, Davis AJ, Piaggio AJ. 2018. Detection and persistence of environmental DNA from an invasive, terrestrial mammal. Ecol Evol [Internet]. [accessed 2021 Jan 23] 8(1): 688-695. https://doi.org/10.1002/ece3.3698
  44. Yamamoto S, Masuda R, Sato Y, Sado T, Araki H, Kondoh M, Minamoto T, Miya M. 2017. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports 2017 7:1 [Internet]. [accessed 2022 Oct 5] 7(1): 1-12. https://doi.org/10.1038/srep40368
  45. Yates MC, Fraser DJ, Derry AM. 2019. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environmental DNA 1(1): 5-13. https://doi.org/10.1002/EDN3.7
  46. Yeoungdeungpo cultural foundation. 2020. A Study on the Basic Environment of Waterfront Ecological Culture for the Development of Waterfront Culture Revitalization Plan. Seoul. [Korean Literature]
  47. Yu Z, Ito SI, Wong MKS, Yoshizawa S, Inoue J, Itoh S, Yukami R, Ishikawa K, Guo C, Ijichi M, Hyodo S. 2022. Comparison of species-specific qPCR and metabarcoding methods to detect small pelagic fish distribution from open ocean environmental DNA. PLOS ONE, 17(9), e0273670. https://doi.org/10.1371/JOURNAL.PONE.0273670