DOI QR코드

DOI QR Code

Soil Health Assessment of Soil Washing and Landfarming Treated Soils

토양세척 및 토양경작 정화 토양의 건강성 평가

  • Yong min Yi (Nakdong River Basin Environmental Office) ;
  • Kijune Sung (Department of Ecological Engineering, Pukyong National University)
  • Received : 2023.02.16
  • Accepted : 2023.04.11
  • Published : 2023.04.30

Abstract

To restore the ecological function of contaminated soil and maximize the ecological services provided by the soil, besides the toxicity orrisk caused by pollutants, the functional aspects of the soil ecosystem should be considered. In this study, a method for evaluating the health of cleaned soil was presented, and the applicability of the proposed evaluation method was examined by applying it to soil treated with washing and landfarming. Productivity, habitat, water retention capacity, nutrient cycling, carbon retention capacity, and buffering capacity were used as soil health evaluation indicators. The results showed that the soil health was not completely recovered after remediation, and even in the case of the washed soil, the health was lower than before remediation. On the other hand, there was no significant change in soil quality due to oil pollution, but soil health deteriorated. Unlike the slightly improved soil quality after landfarming treatment, soil health was not completely restored. Therefore, the results of this study indicate that it is desirable to consider both soil quality and health when evaluating the remediation effect. The soil health evaluation method proposed in this study can be usefully utilized for the sustainable use of cleaned soil and to promote ecosystem services.

오염 토양의 생태적 기능을 회복하고 토양이 제공하는 생태적 서비스를 최대화하기 위해서는 오염물질에 의한 독성이나 위해성 외에도 토양생태계의 기능적인 측면인 생물서식처, 영양분 순환, 완충작용등과 같은 토양의 건강성을 고려하여야 한다. 본 연구에서는 정화토양의 건강성을 정량적으로 평가하는 방법을 제시하고 세척처리 및 토양경작처리 토양에 적용하여 제안한 평가방법의 적용 가능성을 살펴보았다. 토양의 생산성, 서식처, 수분보유능, 물질순환능, 완충능, 탄소보유능 등으로 토양 건강성 평가항목을 선정하고, 평가지표로 식물 성장, 지렁이 성장, 수분보유능, 미생물활성도, 양이온교환용량, 유기물함량 등을 활용하였다. 본 연구결과 오염물질 정화 후에도 토양 건강성이 온전히 회복되지 않는 것으로 나타났는데, 오히려 세척 토양의 경우와 같이 정화 전보다 건강성이 떨어지는 경우도 발생하였다. 반면에 유류 오염으로 인한 토양질의 변화는 크게 없는 반면, 토양건강성은 나빠지는 것으로 나타났으며, 경작처리 후 다소 개선된 토양질과는 달리, 토양 건강성은 여전히 회복하지 못한 것으로 나타났다. 따라서 본 연구 결과 오염과 정화과정 중에 토양의 정화 효과를 평가할 경우에는 토양질과 토양건강성을 함께 고려하는 것이 바람직함을 보여 주었다. 정화 토양의 지속 가능한 이용 및 생태계 서비스 증진을 위해 본 연구에서 제시된 정화 토양의 건강성 평가 방법이 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었습니다.

References

  1. Anderson TH. 2003. Microbial eco-physiological indicators to assess soil quality, Agriculture, Ecosystems and Environment 98(1-3): 285-293. https://doi.org/10.1016/S0167-8809(03)00088-4
  2. Alkorta I, Aigpurua A, Riga P, Albizu I, Amezaga I, Garbisu C. 2003. Soil enzyme activities as biological indicatros of soil health. Reviews on Environmental Health 18(1): 65-73.
  3. Bi CJ, Chen ZL, Wang J, Zhou D. 2013. Quantitative Assessment of Soil Health Under Different Planting Patterns and Soil Types. Pedosphere 23(2): 194-204. https://doi.org/10.1016/S1002-0160(13)60007-7
  4. Bossuyt H, Six J, Hendrix PF. 2006. Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon. Geoderma 130: 14-25. https://doi.org/10.1016/j.geoderma.2005.01.005
  5. Chae YE, Kim SW, Kwak JI, Yoon YD, Jeong SW, An YJ. 2015. A Comparative study of Assessment Techniques for Soil Ecosystem Health:Focusing on Assessment Factors of Soil Health. Journal of Soil and Groundwater Environment 20(3): 15-24. [Korean Literature] https://doi.org/10.7857/JSGE.2015.20.3.015
  6. Chatterjee A, Lal R, Wielopolski L, Martin MZ, Ebinger MH. 2009. Evaluation of different soil carbon determination methods. Critical Reviews in Plant Science 28: 164-178. https://doi.org/10.1080/07352680902776556
  7. Dawson JJC, Godsiffe EJ, Thompson IP, RalebitsoSenior TK, Killham KS, Paton GI. 2007. Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biology and Biochemistry 39: 164-177. https://doi.org/10.1016/j.soilbio.2006.06.020
  8. Dose HL, Fortuna AM, Cihacek LJ, Norland J, DeSutter TM, Clay DE, Bell J. 2015. Biological indicators provide short term soil health assessment during sodic soil reclamation, Ecological Indicators 58: 244-253. https://doi.org/10.1016/j.ecolind.2015.05.059
  9. Doube BM, Schmidt O. 1997. Can the abundance or activity of soil macrofauna be used to indicate the biological health of soils? In: Pankhurst C, Doube B, Gupta V. Biological Indicators of Soil Health; New York; CAB International.
  10. Edwards WM, Shipitalo MJ. 1998. Consequences of earthworms in agricultural soils: Aggregation and porosity. In: Edwards CA. Earthworm Ecology; New York; St. Lucie Press.
  11. Eivazi F, Tabatabai MA. 1988. Glucosidases and galactosidases in soils, Soil Biology and Biochemestry 20: 601-606. https://doi.org/10.1016/0038-0717(88)90141-1
  12. Elliott LF, Lynch JM. 1994. Biodiversity and soil resilience. In: Greenland DJ, Szabolcs I. Soil Resilience and Sustainable Land Use; Wallingford; UK; CAB International.
  13. Garcia C, Roldan A, Hernandez T. 1997. Changes in microbial activity after abandonment cultivation in a semiarid mediterranean environment. Journal of Environmental Quality 26: 285-291. https://doi.org/10.2134/jeq1997.00472425002600010040x
  14. Garcia-Gil JC, Plaza C, Soler-Rovira P, Polo A. 2000. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology and Biochemistry 32: 1907-1913. https://doi.org/10.1016/S0038-0717(00)00165-6
  15. Glover J, Reganold J, Andrews P. 2000. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State, Agriculture, Ecosystems and Environment 80: 29-45. https://doi.org/10.1016/S0167-8809(00)00131-6
  16. Grieg-Smith PW. 1992. A European perspective on ecological risk assessment, illustrated by pesticide registration procedures in the United Kingdom. Environmental Toxicolgy and Chemistry 11: 1673-1689. https://doi.org/10.1002/etc.5620111203
  17. Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE. 1997. Soil quality: a concept, definition, and framework for evaluation. Soil Science Society of America Journl 61: 4-10. https://doi.org/10.2136/sssaj1997.03615995006100010001x
  18. Khan MAI, Biswas B, SMith E, Naidu R, Megharaj M. 2018. Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminatd soil- a review. Chemosphere 212: 755-767. https://doi.org/10.1016/j.chemosphere.2018.08.094
  19. Kim KS, Sung K. 2011. Effects of humic acids on growth of herbaceous plants in soil contaminated with high concentration of petroleum hydrocarbons and heavy metals. Journal of Soil and Groundwater Environment 16(1): 51-61. [Korean Literature] https://doi.org/10.7857/JSGE.2011.16.1.051
  20. Lal R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123: 1-22. https://doi.org/10.1016/j.geoderma.2004.01.032
  21. Lal R, Negassa W, Lorenz K. 2015. Carbon sequestration in soil. Current Opinion in Environmental Sustainability 15: 79-86. https://doi.org/10.1016/j.cosust.2015.09.002
  22. Lavelle P. 1997. Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecologial Research. 27: 93-132. https://doi.org/10.1016/S0065-2504(08)60007-0
  23. Lima ACR, Brussaard L, Totola MR, Hoogmoed WB, de Goede RGM. 2013. A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology 64: 194-200. https://doi.org/10.1016/j.apsoil.2012.12.009
  24. NAAS (National Academy of Agricultural Science in Korea). 1988. Soil testing method. [Korean Literature]
  25. O'Neill RV, DeAngeles DL, Waide JB, Allen TFH. 1986. A hierarchical concept of ecosystems. Princeton University Press, Princeton, NJ, p. 263. 
  26. OECD. 2008. OECD guidelines for the testing of chemicals, section 2. Effects on biotic system. Predatory mite reproduction test in soil
  27. Parmelee R, Crossley DA. 1988. Earthworm production and role in the nitrogen cycle of a no-tillage agroecosystem on the Georgia Piedmont. Pedobiologia 32: 351-361. https://doi.org/10.1016/S0031-4056(23)00251-2
  28. Parmelee RW, Bohlen PJ, Blair JM. 1998. Earthworms and nutrient cycling processes: Integrating across the ecological hierarchy. In: Edwards CA. Earthworm Ecology; New York; St. Lucie Press.
  29. Paul EA, Clark FE. 1989. Soil microbiology and biochemistry. Academic Press: San Diego.
  30. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R. 2015. Ecological implications of motor oil pollution: Earthworm survival and soil health. Soil Biology and Biochemistry 85: 72-81. https://doi.org/10.1016/j.soilbio.2015.02.026
  31. Robidoux PY, Svendsen C, Caumartin J, Hawari J, Ampleman G, Thiboutot S, Weeks JM, Sunahara GI. 2009. Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test. Environmental Toxicology and Chemistry 19(7): 1764-1773. https://doi.org/10.1002/etc.5620190709
  32. Schinner F, Ohlinger R, Kandeler E, Margesin R. 1996. Methods in Soil Biology. Springer, Heidelberg.
  33. Shakir HSH, Weaver RW. 2002. Earthworm survival in oil contaminated soil. Plant Soil 240: 127-132 https://doi.org/10.1023/A:1015816315477
  34. Speir TW, Hettles HA, Percival HJ, Parshotam A. 1999. Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salt?. Soil Biology and Biochemistry 31: 1953-1961. https://doi.org/10.1016/S0038-0717(99)00115-7
  35. Stroud JL. 2019. Soil health pilot study in England: Outcomes from an on-farm earthworm survey. PLOS ONE 1-16.
  36. Suh JS, Kim SH, Um MH. 2000. Diversity of soil microbes and assessment of soil health, The 2000 First Half Symposium of Korean Association of Organic Agriculture, 135-148. [Korean Literature]
  37. Szabolcs I. 1994. The concept of soil resilience. In: Greenland DJ, Szabolcs I. Soil Resilience and Sustainable Land Use; Wallingford; UK; CAB International.
  38. Tang J, Wang M, Wang F, Sun Q, Zhou Q. 2011. Eco-toxicity of petroleum hydrocarbon contaminatd soil. Journal of Environmental Sciences 23(5): 845-851.
  39. Wang QY, Zhou DM, Cang L, Sun TR. 2009. Application of bioassays to evaluate a copper contaminated soil before and after a pilot-scale electrokinetic remediation. Environmental Pollution 157(2): 410-416. https://doi.org/10.1016/j.envpol.2008.09.036
  40. Whalen JK, Parmelee R, Subler S. 2000. Quantification of nitrogen excretion rates for three lumbricid earthworms using 15N, Biology and Fertility of Soils 32: 347-352. https://doi.org/10.1007/s003740000259
  41. Wymore AW. 1993. Model-based systems engineering. an introduction to the mathematical theory of discrete systems and to the tricotyledon theory of systems design. CRC, Boca Raton, FL.
  42. Yi YM, Sung K. 2022. Soil quality assessment of remediated soils. Journal of Korean Ecological Engineering Society 9(1):11-16. https://doi.org/10.33214/kees.2022.9.1.11
  43. Yi YM, Park S, Munter C, Kim G, Sung K. 2016. Changes in ecological properties of petroleum oil-contaminated soil after low-temperature thermal desorption treatment. Water Air and Soil Pollution 227: 108.