DOI QR코드

DOI QR Code

A Case Study of the Implementation of Deployment Switch for Nanosatellites

나노위성 전개스위치 구현 사례 및 고찰

  • Received : 2022.12.14
  • Accepted : 2023.01.07
  • Published : 2023.02.28

Abstract

Most Nanosatellites are launched in nanosatellite deployers. Nanosatellites in the deployer are turned off during launch, and they start boot sequence after deploying at their mission orbit. For this reason, nanosatellites must have deployment switch. Most of the nanosatellite deployment switch has two part, first is electric switch to boot the satellite system and second is mechanical assembly to push the switch. In most cases, electric switches are installed in the satellite main body, and the switch operations are translated via the mechanical assembly. These implementations are mechanically complicated and hard to guarantee the appropriate operation without the problems due to friction between pusher and satellite structure. This paper proposes the another implementation method of deployment switch for nanosatellites by installing the electric switch outside the main body without any kind of mechanical parts.

대다수 나노위성은 발사관에 수납되어 발사되며 발사관 내부의 나노위성은 수납 중에는 전원이 꺼진 상태로 보관되다가 전개와 동시에 전원이 인가된다. 이를 위하여 나노위성은 전개스위치를 필수로 장착하고 있다. 대부분의 나노위성의 전개스위치는 위성의 부팅을 담당하는 전기 스위치와 그를 조작하는 기계적 조립체로 구성된다. 위성은 본체 내부에 전기 스위치를 갖추고 있으며, 이를 누르는 기계적 구조를 통해 외부에서 스위치를 조작한다. 이러한 설계는 기계적 복잡도를 높이고 누름쇠와 본체와의 마찰과 같은 문제로 확실한 작동을 보장하기 어렵다는 단점이 있다. 본문에서는 이의 대안으로 전기스위치를 본체 바깥에 장착하여 직접 외부와 접촉하는 방식과 그 구현 사례를 소개하며 나노위성 전개스위치 구현에 관한 새로운 방법론을 제안하고자 한다.

Keywords

Acknowledgement

본 논문은 한국항공우주연구원의 '궤도상 서비싱 기반기술 개발' 사업 연구 성과의 일부이며, 지원에 감사드린다.

References

  1. Helvajian H, Janson SW, Small Satellites Past, Present and Future (Aerospace Press, Reston, VA, 2008).
  2. Nanosats Database, Nanosatellite & Cubesat Database (2023) [Internet], viewed 2023 Jan 20, available from: https://www.nanosats.eu/database
  3. Cal Poly SLO, CubeSat Design Specification, 13th Revision (Cal Poly, San Luis Obispo, CA, 2014).
  4. Cal Poly SLO, 6U CubeSat Design Specification, 1st Revision (Cal Poly, San Luis Obispo, CA, 2018).
  5. Planetary Systems, Payload Specification for 3U, 6U, 12U AND 27U (Planetary Systems, Samara, 2017).
  6. Cho DH, Choi WS, Kim MK, Kim JH, Sim E, et al., High-resolution image and video CubeSat (HiREV): development of space technology test platform using a low-cost CubeSat platform, Int. J. Aerosp. Eng. 2019, 8916416 (2019). https://doi.org/10.1155/2019/8916416
  7. Kim HD, Choi WS, Cho DH, Kim MK, Kim JH, et al., Introduction to development of a rendezvous/docking demonstration satellite, Proceedings of The Korean Society for Aeronautical and Space Sciences Spring Conference, Buan, Korea, 17-20 Apr 2019.
  8. SNIPE Project, Mission summary [Internet], viewed 2023 Jan 20, available from: http://kswrc.kasi.re.kr/snipe/about_mission_summary.php?lang=ko
  9. Korea Astronomy and Space Science Institute and Korea Aerospace Research Institute, SNIPE Critical Design Review/Bus System (Korea Astronomy and Space Science Institute, Daejeon, Korea, 2019).
  10. Kim MK, Choi WS, Kim JH, Sohn JD, Lee JJ, Implementation of 6U Nanosatellite Separation Switch. Proceedings of The Korean Space Sciences Society Spring Conference, Samcheok, Korea, 27-29 Apr 2022.
  11. ISISpace, Cubesat structures [Internet], viewed 2023 Jan 20, available from: https://www.isispace.nl/product-category/cubesat-structures/
  12. GOMSPACE, 3U platform [Internet], viewed 2023 Jan 20, available from: https://gomspace.com/3u-(1).aspx
  13. Pumpkin space, CubeSat KitTM structures [Internet], viewed 2023 Jan 20, available from: https://www.pumpkinspace.com/store/c4/CubeSat_Kit%E2%84%A2_Structures.html
  14. Kim MK, Kim HD, Choi WS, Kim JH, Kim KD, et al., Launch environment test for scale magnetospheric and ionospheric plasma experiment (SNIPE) engineering qualification model, J. Space Technol. Appl. 1, 319-336 (2021). https://doi.org/10.52912/jsta.2021.1.3.319
  15. Park YH, Go JS, Chae BG, Lee SH, Oh HU, Functional verification of nylon wire cutting-type holding & release mechanism for 6U CubeSat's solar panel, J. Korean Soc. Aeronaut. Space Sci. 46, 867-875 (2018). https://doi.org/10.5139/JKSAS.2018.46.10.867
  16. Kim HD, Choi WS, Kim MK, Kim JH, Kim K, et al., Results and lessons learned from nanosatellite space environment test, J. Korean Soc. Aeronaut. Space Sci. 49, 919-931 (2021). https://doi.org/10.5139/JKSAS.2021.49.11.919
  17. Kim MK, Kim HD, Choi WS, Kim JH, Kim KD, et al., Case studies and lessons learned from launch environmental test for nanosatellites, J. Korean Soc. Aeronaut. Space Sci. 50, 423-433 (2022). https://doi.org/10.5139/JKSAS.2022.50.6.423
  18. Kim MK, Kim HD, Choi WS, Cho DH, Kim JH, Satellite projectile having vibration reducing function and launching method using the same, Korea Patent No. 1021346200000 (2020).
  19. Kim MK, Kim HD, Choi WS, Cho DH, Kim JH, Satellite launch vehicle, Korea Patent No. 1023043770000 (2021).
  20. Cha WH, Tahk KM, Advances in deployment mechanism of the localized 3U Cubesat Deployer, Proceedings of The Korean Society for Aeronautical and Space Sciences 2019 Fall Conference, Jeju, Korea, 20-23 Nov 2019.
  21. Parker, THERM -A-GAP 579 [Internet], viewed 2023 Jan 20, available from: https://www.digikey.kr/ko/products/detail/parker-chomerics/61-02-0909-G579/9349980
  22. Honeywell, ZX10C30B01 [Internet], viewed 2023 Jan 20, available from: https://www.mouser.kr/ProductDetail/Honeywell/ZX10C30B01?qs=10P5Hhl%252BD7%252BJhDdAU0s%2FyA%3D%3D
  23. Honeywell, ZX40E10J01 [Internet], viewed 2023 Jan 20, available from: https://www.mouser.kr/ProductDetail/Honeywell/ZX40E10J01?qs=LPAag0b11%252BfnClWYJleWpA%3D%3D