• Title/Summary/Keyword: 나노위성

Search Result 54, Processing Time 0.028 seconds

A Case Study of the Implementation of Deployment Switch for Nanosatellites (나노위성 전개스위치 구현 사례 및 고찰)

  • Min Ki Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.72-85
    • /
    • 2023
  • Most Nanosatellites are launched in nanosatellite deployers. Nanosatellites in the deployer are turned off during launch, and they start boot sequence after deploying at their mission orbit. For this reason, nanosatellites must have deployment switch. Most of the nanosatellite deployment switch has two part, first is electric switch to boot the satellite system and second is mechanical assembly to push the switch. In most cases, electric switches are installed in the satellite main body, and the switch operations are translated via the mechanical assembly. These implementations are mechanically complicated and hard to guarantee the appropriate operation without the problems due to friction between pusher and satellite structure. This paper proposes the another implementation method of deployment switch for nanosatellites by installing the electric switch outside the main body without any kind of mechanical parts.

DEVELOPMENT AND PERFORMANCE VALIDATION OF INTEGRATED ELECTRONIC UNIT FOR NANOSATELLITE (나노위성용 통합형 전장박스의 개발 및 성능검증)

  • Chang Jin-Soo;Kim Dong-Woon;Lee Byung-Hoon;Moon Byoung-Young;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.04a
    • /
    • pp.133-136
    • /
    • 2006
  • Unlike large satellites, small satellites, such as nanosatellite and microsatellite, provide a limited interior space for components mounting. In order to mitigate this issue, the compact Bus Electronic Unit (BEU) that integrates satellite electronic modules, combining most of bus subsystems and payloads electronic modules into one unit, has been developed for HAUSAT-2 nanosatellite. This paper addresses the design and environmental test result analyses of BEU.

  • PDF

Development and Performance Validation of Integrated Bus Electronic Unit for Small Satellite (소형위성용 통합형 전장박스의 개발 및 성능검증)

  • Chang, Jin-Soo;Kim, Dong-Woon;Kang, Suk-Jin;Lee, Byung-Hoon;Moon, Byoung-Young;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.353-362
    • /
    • 2007
  • Unlike large satellites, small satellites, such as nanosatellite and microsatellite, can provide a limited interior space for components mounting. In order to mitigate this issue, the compact Bus Electronic Unit(BEU) that integrates satellite electronic modules, combining most of bus subsystems and payload electronic modules into one unit, has been developed for HAUSAT-2 nanosatellite. This paper addresses the design and environmental test result analyses of BEU. The vibration and thermal vacuum tests were conducted at qualification level for the verification of design margin of newly developed BEU. The performance of individual electronic subsystem modules has been verified through performance tests before and after the qualification tests. It was confirmed that the natural frequency of BEU satisfies the design stiffness requirement without structural damage in the vibration test. Thermal analysis results were also almost consistent with test results through modified thermal analysis modeling.

DEVELOPMENT AND PERFORMANCE VERIFICATION OF NANOSATELLITE HAUSAT-2 COMMUNICATION SUBSYSTEM (나노위성 HAUSAT-2 통신 서브시스템 개발 및 성능검증)

  • Yi Shim-Ho;Moon Byoung-Young;Na Hee-Seung;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.04a
    • /
    • pp.125-128
    • /
    • 2006
  • Communication Subsystem of HAUSAT-2 which is 25kg class nanosatellite is designed, manufactured and tested for its performance verification at the Space System Research Laboratory (SSRL). HAUSAT-2 Communication Subsystem provides communication link for commands receiving, mission and state of health data transmission with high reliability. This paper describes design, manufacturing, test results of Engineering Model of HAUSAT-2.

  • PDF

Development of SEDT(System Engineering Design Tool) for Small Satellite Conceptual Design (소형위성 개념설계를 위한 SEDT의 개발)

  • Hwang, Ki-Lyong;Lee, Bo-Ra;Kim, Su-Jeoung;Ko, Sung-Hwan;Kwon, Soon-Kyung;Lee, Mi-Hyun;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.93-103
    • /
    • 2005
  • SEDT(System Engineering Design Tool) has been developed for small satellite conceptual design with an aim to verifying the nanosatellite HAUSAT-2 design. The program can calculate the mass and power of whole satellite system having specific mission and estimate the system cost based on mission and user requirements. It is containing various analysis data of more than 200 small satellites. The database will provide the trend analysis results of the small satellites which will become important design factors. This tool has also been verified by applying more than 10 small satellite data through case studies.

HAUSAT-2 STM(Structural-Thermal Model) Development and Launch Environment Test Result Analyses (HAUSAT-2 위성 STM 개발 및 발사환경시험 분석)

  • Chang, Jin-Soo;Hwang, Ki-Lyong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.95-105
    • /
    • 2005
  • The HAUSAT-2 nanosatellite which is scheduled to launch in 2008 is being developed by SSRL(Space System Research Lab.). The HAUSAT-2 STM(Structural-Thermal Model) was developed as the first system model to verify structural and thermal design margin. The qualification level vibration and thermal tests have been conducted on STM. This paper addresses the comparison of structural analysis and test results of HAUSAT-2 STM. It was shown that the natural frequency of HAUSAT-2 STM satisfies the stiffness requirements without structural damage in the random vibration test. The assembly and integration validity were also checked out through STM.

Low-Cost Small Satellite Research and Development as an Education Tool (교육용 도구로서의 저가 소형위성 연구 및 개발)

  • 문병영;장영근;이병훈
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.80-91
    • /
    • 2006
  • A method of multidisciplinary education has been implemented for satellite design, based on HAUSAT-1 and 2 ultra-small satellite development projects, in order to provide practical knowledge and experience to students studying satellite engineering. HAUSAT-1 was the nation's first 1kg-class ultra-small satellite. HAUSAT-2 nano-satellite is currently under a Proto-Flight Model development. These design projects make it possible to achieve the goal of science and technical research, which is representative of a university function, and the goal of molding professionals through providing an integrated function of system design education. An integrated system design, like satellite system, provides all participating students with an opportunity to directly/indirectly experience the entire system development process and encourage growth of multidisciplinary system education that has lately become an important issue.

Development of CanSat System for Vehicle Tracking based on Jetson Nano (젯슨 나노 기반의 차량 추적 캔위성 시스템 개발)

  • Lee, Younggun;Lee, Sanghyun;You, Seunghoon;Lee, Sangku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.556-558
    • /
    • 2022
  • This paper proposes a CanSat system with a vehicle tracking function based on Jetson Nano, a high-performance small computer capable of operating artificial intelligence algorithms. The CanSat system consists of a CanSat and a ground station. The CanSat falls in the atmosphere and transmits the data obtained through the installed sensors to the ground station using wireless communication. The existing CanSat is limited to the mission of simply transmitting the collected information to the ground station, and there is a limit to efficiently performing the mission due to the limited fall time and bandwidth limitation of wireless communication. The Jetson Nano based CanSat proposed in this paper uses a pre-trained neural network model to detect the location of a vehicle in each image taken from the air in real time, and then uses a 2-axis motor to move the camera to track the vehicle.

  • PDF

Case Studies and Lessons Learned from Launch Environmental Test for Nanosatellites (나노급 초소형위성 발사환경시험 사례 및 교훈)

  • Kim, Min-Ki;Kim, Hae-Dong;Choi, Won-Sub;Kim, Jin-Hyung;Kim, KiDuck;Kim, Ji-Seok;Cho, Dong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.423-433
    • /
    • 2022
  • This paper introduces the case studies of launch environmental test for cube nanosatellites and lessons learned of the design and integration from those. Generally, nanosatellites are launched and deployed in space while being contained in nanosatellite deployers, mechanical loads of launch are transferred through the deployer. This characteristic make nanosatellites under larger loads and higher possibilities of mechanical failure. This study represents guidelines of the design and the integration of the nanosatellites by showing the cases of launch environmental test of nanosatellite system. Moreover, it is suggested that the modern nanosatellite deployer with the capability of fixing the internal nanosatellite be preferable to conventional deployer by comparing the test results with those deployers.