DOI QR코드

DOI QR Code

Scientific Achievements and Technology Trends of Mass Spectrometers for Space Exploration

우주탐사용 질량분석기들의 과학적 성과와 기술 동향

  • Ik-Seon Hong (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Yu Yi (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Jingeun Rhee (Young In ACE Co., Ltd.) ;
  • Nam-Seok Lee (Young In ACE Co., Ltd.) ;
  • Sung Won Kang (Young In ACE Co., Ltd.) ;
  • Seontae Kim (Young In ACE Co., Ltd.) ;
  • Kyu-Ha Jang (Korea Atomic Energy Research Institute) ;
  • Cheong Rim Choi (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Kyoung Wook Min (Korea Advanced Institute of Science and Technology) ;
  • Jongil Jung (Department of Astronomy, Space Science and Geology, Chungnam National University)
  • Received : 2022.12.13
  • Accepted : 2023.01.08
  • Published : 2023.02.28

Abstract

As Korean first lunar probe, Danuri, succeeded in entering lunar orbit, Korean new space exploration plans such as Mars exploration can be expected. Korean space exploration payload is developed only in a limited field, so there is a need to create a new space exploration payload. In foreign countries, there is a mass spectrometer as a basic equipment for space exploration, and it is a very useful payload that encompasses the exploration of life through the analysis of organic matter as well as the observation of the atmosphere and volatile substances of the exploration target. However, Korea has never developed a mass spectrometer payload for space exploration, so it is necessary to secure technology in preparation for future space exploration. Before that, we look at the scientific achievements of foreign mass spectrometer payloads for space exploration and identify trends.

우리나라의 첫 달 탐사선 다누리호가 달 궤도에 진입을 성공하면서 이후 화성 탐사와 같은 우리나라의 새로운 우주탐사 계획을 기대할 수 있게 되었다. 우리나라의 우주탐사 탑재체는 한정적인 분야에서만 개발되어 새로운 우주탐사 탑재체를 개발할 필요성이 있다. 국외에서는 우주탐사에 거의 기본적으로 탑재되는 장비로 질량분석기가 있으며, 탐사 대상의 대기와 휘발성 물질 관측과 더불어 유기물 분석을 통한 생명체 탐사까지 아우르는 매우 유용한 탑재체이다. 하지만 우리나라에선 우주탐사용으로 질량분석기 탑재체를 개발한 전적이 없으므로 앞으로의 우주탐사를 대비해 기술을 확보해야 할 필요가 있다. 그에 앞서 국외의 우주탐사용 질량분석기 탑재체의 과학적 성과를 살펴보고 동향을 파악해본다.

Keywords

Acknowledgement

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(NRF-2022R1A2C1092602). 또한 이 연구는 정부(과학기술정보통신부)의 재원으로 과학기술일자리진흥원의 지원을 받아 수행되었습니다(2020 연구장비개발 및 고도화 지원사업).

References

  1. National Space Committee, The new government hold the first National Space Committee, the concentration of national capabilities to expand economic territory to space (2022) [Internet], viewed 2022 Sep 20, available from: https://www.korea.kr/common/download.do?fileId=197128749&tblKey=GMN
  2. Seon KI, Yuk IS, Ryu KS, Lee DH, Optical design of FIMS type far ultraviolet spectrograph for space observation, Publ. Korean Astron. Soc. 19, 65-70 (2004). https://doi.org/10.5303/PKAS.2004.19.1.065
  3. Han W, Lee DH, Jeong WS, Park Y, Moon B, et al., MIRIS: a compact wide-field infrared space telescope, Publ. Astron. Soc. Pac. 126, 853-862 (2014). https://doi.org/10.1086/678130
  4. Jeong WS, Park SJ, Moon B, Lee DH, Pyo J, et al., Near-infrared imaging spectrometer onboard NEXTSat-1, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Edinburgh, UK, 26 Jun-1 Jul 2016.
  5. Ren Z, Guo M, Cheng Y, Wang Y, Sun W, et al., A review of the development and application of space miniature mass spectrometers, Vacuum. 155, 108-117 (2018). https://doi.org/10.1016/j.vacuum.2018.05.048
  6. Arevalo R Jr, Ni Z, Danell RM, Mass spectrometry and planetary exploration: a brief review and future projection, J. Mass. Spectrom. 55, e4454 (2020). https://doi.org/10.1002/jms.4454
  7. Hoffman JH, Lunar atmospheric composition experiment final report, NASA Technical Report Server, NASA-CR-150946 (1975).
  8. Killen RM, Williams DR, Park J, Tucker OJ, Kim SJ, The lunar neon exosphere seen in LACE data, Icarus. 329, 246-250 (2019). https://doi.org/10.1016/j.icarus.2019.04.018
  9. Biemann K, Oro J, Toulmin P 3rd, Orgel LE, Nier AO, et al., The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res. 82, 4641-4658 (1977). https://doi.org/10.1029/JS082i028p04641
  10. Toulmin P 3rd, Baird AK, Clark BC, Keil K, Rose HJ Jr, et al., Geochemical and mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res. 82, 4625-4634 (1977). https://doi.org/10.1029/js082i028p04625
  11. Donahue TM, Pioneer Venus results: an overview, Science 205, 41-44 (1979). https://doi.org/10.1126/science.205.4401.41
  12. Hoffman JH, Oyama VI, von Zahn U, Measurements of the Venus lower atmosphere composition: a comparison of results, J. Geophys. Res. 85, 7871-7881 (1980). https://doi.org/10.1029/JA085iA13p07871
  13. Istomin VG, Grechnev KV, Kochnev VA, Venera 13 and Venera 14: mass spectrometry of the atmosphere, Kosm. Issled. 21, 410-420 (1983).
  14. Kissel J, Sagdeev RZ, Bertaux JL, Angarov VN, Audouze J, et al., Composition of comet Halley dust particles from Vega observations, Nature 321, 280-282 (1986). https://doi.org/10.1038/321280a0
  15. Kissel J, Krueger FR, The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1, Nature 326, 755-760 (1987). https://doi.org/10.1038/326755a0
  16. Reinhard R, The Giotto encounter with comet Halley, Nature 321, 313-318 (1986). https://doi.org/10.1038/321313a0
  17. Niemann HB, Harpold DN, Atreya SK, Carignan GR, Hunten DM, et al., Galileo probe mass spectrometer experiment, Space Sci. Rev. 60, 111-142 (1992). https://doi.org/10.1007/BF00216852
  18. Mahaffy PR, Donahue TM, Atreya SK, Owen TC, Niemann HB, Galileo probe measurements of D/H and 3He/4He in Jupiter's atmosphere, Space Sci. Rev. 84, 251-263 (1998). https://doi.org/10.1023/A:1005091806594
  19. Kallenbach R, Ipavich FM, Kucharek H, Bochsler P, Galvin AB, et al., Fractionation of SI, NE, and MG isotopes in the solar wind as measured by SOHO/CELIAS/MTOF, Space Sci. Rev. 85, 357-370 (1998). https://doi.org/10.1023/A:1005131424697
  20. Waite JH Jr, Lewis WS, Kasprzak WT, Anicich VG, Block BP, et al., The Cassini ion and neutral mass spectrometer (INMS) investigation, Space Sci. Rev. 114, 113-231 (2004). https://doi.org/10.1007/s11214-004-1408-2
  21. Snowden D, Yelle RV, Cui J, Wahlund JE, Edberg NJT, et al., The thermal structure of Titan's upper atmosphere, I: temperature profiles from Cassini INMS observations, Icarus. 226, 552-582 (2013). https://doi.org/10.1016/j.icarus.2013.06.006
  22. Snowden D, Yelle RV, The thermal structure of Titan's upper atmosphere, II: energetics, Icarus. 228, 64-77 (2014). https://doi.org/10.1016/j.icarus.2013.08.027
  23. Ihara A, Doke T, Hasebe N, Kikuchi J, Kobayashi MN, et al., Electron and ion spectrometer onboard the Nozomi spacecraft and its initial results in interplanetary space, Astropart. Phys. 17, 263-278 (2002). https://doi.org/10.1016/S0927-6505(01)00163-3
  24. Kissel J, Krueger FR, Silen J, Clark BC, The cometary and interstellar dust analyzer at comet 81P/Wild 2, Science 304, 1774-1776 (2004). https://doi.org/10.1126/science.1098836
  25. Reynolds E, Chiu M, Farquhar R, Dunham D, The CONTOUR discovery mission, in 1999 IEEE Aerospace Conference, Snowmass, CO, 7 Mar 1999.
  26. Balsiger H, Altwegg K, Bochsler P, Eberhardt P, Fischer J, et al., Rosina - Rosetta orbiter spectrometer for ion and neutral analysis, Space Sci. Rev. 128, 745-801 (2007). https://doi.org/10.1007/s11214-006-8335-3
  27. Roy LL, Altwegg K, Balsiger H, Berthelier JJ, Bieler A, et al., Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA, Astron. Astrophys. 583, A1 (2015). https://doi.org/10.1051/0004-6361/201526450
  28. Schroeder IRHG, Altwegg K, Balsiger H, Berthelier JJ, Combi MR, et al., A comparison between the two lobes of comet 67P/Churyumov-Gerasimenko based on D/H ratios in H2O measured with the Rosetta/ROSINA DFMS, Mon. Not. R. Astron. Soc. 489, 4734-4740 (2019). https://doi.org/10.1093/mnras/stz2482
  29. Schroeder IRHG, Altwegg K, Balsiger H, Berthelier JJ, Keyser JD, et al., 16O/18O ratio in water in the coma of comet 67P/Churyumov-Gerasimenko measured with the Rosetta/ROSINA double-focusing mass spectrometer, Astron. Astrophys. 630, A29 (2019). https://doi.org/10.1051/0004-6361/201833806
  30. Kissel J, Altwegg K, Clark BC, Colangeli L, Cottin H, et al., Cosima - high resolution time-of-flight secondary ion mass spectrometer for the analysis of cometary dust particles onboard Rosetta, Space Sci. Rev. 128, 823-867 (2007). https://doi.org/10.1007/s11214-006-9083-0
  31. Paquette JA, Fray N, Bardyn A, Engrand C, Alexander CMOD, et al., D/H in the refractory organics of comet 67P/Churyumov-Gerasimenko measured by Rosetta/COSIMA, Mon. Not. R. Astron. Soc. 504, 4940-4951 (2021). https://doi.org/10.1093/mnras/stab1028
  32. Bardyn A, Baklouti D, Cottin H, Fray N, Briois C, et al., Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta, Mon. Not. R. Astron. Soc. 469, S712-S722 (2017). https://doi.org/10.1093/mnras/stx2640
  33. Morse A, Mousis O, Sheridan S, Morgan G, Andrews D, et al., Low CO/CO2 ratios of comet 67P measured at the Abydos landing site by the Ptolemy mass spectrometer, Astron. Astrophys. 583, A42 (2015). https://doi.org/10.1051/0004-6361/201526624
  34. Leseigneur G, Bredehoft JH, Gautier T, Giri C, Kruger H, et al., ESA's cometary mission Rosetta-re-characterization of the COSAC mass spectrometry results, Angew. Chem. Int. Ed. Engl. 61, e202201925 (2022). https://doi.org/10.1002/anie.202201925
  35. Cannon KM, Sutter B, Ming DW, Boynton WV, Quinn R, Perchlorate induced low temperature carbonate decomposition in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA), Geophys. Res. Lett. 39 (2012). https://doi.org/10.1029/2012GL051952
  36. Sutter B, Boynton WV, Ming DW, Niles PB, Morris RV, et al., The detection of carbonate in the martian soil at the Phoenix Landing site: a laboratory investigation and comparison with the Thermal and Evolved Gas Analyzer (TEGA) data, Icarus. 218, 290-296 (2012). https://doi.org/10.1016/j.icarus.2011.12.002
  37. Darrach MR, Chutjian A, Bornstein BJ, Croonquist AP, Garkanian V, et al., Trace chemical and major constituents measurements of the International Space Station atmosphere by the vehicle cabin atmosphere monitor, in 42nd International Conference on Environmental Systems, San Diego, CA, 15-19 Jul 2012.
  38. Mahaffy PR, Webster CR, Cabane M, Conrad PG, Coll P, et al., The sample analysis at mars investigation and instrument suite, Space Sci. Rev. 170, 401-478 (2012). https://doi.org/10.1007/s11214-012-9879-z
  39. Wong MH, Atreya SK, Mahaffy PN, Franz HB, Malespin C, et al., Isotopes of nitrogen on Mars: atmospheric measurements by Curiosity's mass spectrometer, Geophys. Res. Lett. 40, 6033-6037 (2013). https://doi.org/10.1002/2013GL057840
  40. Atreya SK, Trainer MG, Franz HB, Wong MH, Manning HLK, et al., Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on curiosity and implications for atmospheric loss, Geophys. Res. Lett. 40, 5605-5609 (2013). https://doi.org/10.1002/2013GL057763
  41. Webster CR, Mahaffy PR, Determining the local abundance of Martian methane and its' 13C/12C and D/H isotopic ratios for comparison with related gas and soil analysis on the 2011 mars science laboratory (MSL) mission, Planet. Space Sci. 59, 271-283 (2011). https://doi.org/10.1016/j.pss.2010.08.021
  42. Mahaffy PR, Richard Hodges R, Benna M, King T, Arvey R, et al., The neutral mass spectrometer on the lunar atmosphere and dust environment explorer mission, Space Sci. Rev. 185, 27-61 (2014). https://doi.org/10.1007/s11214-014-0043-9
  43. Benna M, Mahaffy PR, Halekas JS, Elphic RC, Delory GT, Variability of helium, neon, and argon in the lunar exosphere as observed by the LADEE NMS instrument, Geophys. Res. Lett. 42, 3723-3729 (2015). https://doi.org/10.1002/2015GL064120
  44. Mahaffy PR, Benna M, King T, Harpold DN, Arvey R, et al., The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission, Space Sci. Rev. 195, 49-73 (2015). https://doi.org/10.1007/s11214-014-0091-1
  45. Bougher SW, Roeten KJ, Olsen K, Mahaffy PR, Benna M, The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: seasonal and solar activity trends in scale heights and temperatures, J. Geophys. Res. Space Phys. 122, 1296-1313 (2016). https://doi.org/10.1002/2016JA023454
  46. England SL, Liu G, Yigit E, Mahaffy PR, Elrod M, et al., MAVEN NGIMS observations of atmospheric gravity waves in the Martian thermosphere, J. Geophys. Res. Space Phys. 122, 2310-2335 (2016). https://doi.org/10.1002/2016JA023475
  47. Bayer T, Bittner M, Buffington B, Dubos G, Ferguson E, et al., Europa Clipper mission: preliminary design report, in 2019 IEEE Aerospace Conference, Big Sky, MT, 2-9 Mar 2019.
  48. Fohn M, Galli A, Vorburger A, Tulej M, Lasi D, et al., Description of the mass spectrometer for the Jupiter icy moons explorer mission, in 2021 IEEE Aerospace Conference, Big Sky, MT, 6-13 Mar 2021.
  49. Arevalo R, Brinckerhoff W, Amerom F, Danell R, Pinnick V, et al., Design and demonstration of the Mars organic molecule analyzer (MOMA) on the ExoMars 2018 rover, in 2015 IEEE Aerospace Conference, Big Sky, MT, 7-14 Mar 2015.