DOI QR코드

DOI QR Code

Evaluation of Radiological Effects on the Aptamers to Remove Ionic Radionuclides in the Liquid Radioactive Waste

  • Received : 2022.07.13
  • Accepted : 2022.12.21
  • Published : 2023.03.31

Abstract

Background: Aptamers are currently being used in various fields including medical treatments due to their characteristics of selectively binding to specific molecules. Due to their special characteristics, the aptamers are expected to be used to remove radionuclides from a large amount of liquid radioactive waste generated during the decommissioning of nuclear power plants. The radiological effects on the aptamers should be evaluated to ensure their integrity for the application of a radionuclide removal technique. Materials and Methods: In this study, Monte Carlo N-Particle transport code version 6 (MCNP6) and Monte Carlo damage simulation (MCDS) codes were employed to evaluate the radiological effects on the aptamers. MCNP6 was used to evaluate the secondary electron spectrum and the absorbed dose in a medium. MCDS was used to calculate the DNA damage by using the secondary electron spectrum and the absorbed dose. Binding experiments were conducted to indirectly verify the results derived by MCNP6 and MCDS calculations. Results and Discussion: Damage yields of about 5.00×10-4 were calculated for 100 bp aptamer due to the radiation dose of 1 Gy. In experiments with radioactive materials, the results that the removal rate of the radioactive 60Co by the aptamer is the same with the non-radioactive 59Co prove the accuracy of the previous DNA damage calculation. Conclusion: The evaluation results suggest that only very small fraction of significant number of the aptamers will be damaged by the radioactive materials in the liquid radioactive waste.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20203210100390, Development of Eco-friendly Bio-material to Improve the Treatment Performance of Radioactive Liquid Waste from Decommissioning).

References

  1. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818-822. https://doi.org/10.1038/346818a0
  2. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A. 2006;103(16):6315-6320. https://doi.org/10.1073/pnas.0601755103
  3. Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol Adv. 2019;37(1):28-50. https://doi.org/10.1016/j.biotechadv.2018.11.001
  4. Ni S, Yao H, Wang L, Lu J, Jiang F, Lu A, et al. Chemical modifications of nucleic acid aptamers for therapeutic purposes. Int J Mol Sci. 2017;18(8):1683.
  5. Hidding J. A therapeutic battle: antibodies vs. aptamers. aptamers [Internet]. Groningen, Nederlands: Zernike Institute for Advanced Materials, University of Groningen; 2016 [cited 2023 Feb 15]. Available from: https://www.rug.nl/research/zernike/education/topmasternanoscience/programme-documents/ns190-papers/ns_190_hidding-atherapeuticbattleantibodiesvs.aptamers.pdf.
  6. Zhang Y, Hong H, Cai W. Tumor-targeted drug delivery with aptamers. Curr Med Chem. 2011;18(27):4185-4194. https://doi.org/10.2174/092986711797189547
  7. Mukhopadhyay R. Aptamers are ready for the spotlight. Anal Chem. 2005;77(5):114A-118A. https://doi.org/10.1021/ac053344m
  8. Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45(9):1628-1650. https://doi.org/10.1093/clinchem/45.9.1628
  9. Marnissi B, Kamali-Moghaddam M, Ghram A, Hmila I. Generation of ssDNA aptamers as diagnostic tool for Newcastle avian virus. PLoS One. 2020;15(8):e0237253.
  10. Bauer M, Strom M, Hammond DS, Shigdar S. Anything you can do, I can do better: can aptamers replace antibodies in clinical diagnostic applications? Molecules. 2019;24(23):4377.
  11. Han K, Liang Z, Zhou N. Design strategies for aptamer-based biosensors. Sensors (Basel). 2010;10(5):4541-4557. https://doi.org/10.3390/s100504541
  12. Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK. Antibodyaptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol. 2010;109(3):808-817. https://doi.org/10.1111/j.1365-2672.2010.04709.x
  13. Bouvier-Muller A, Duconge F. Application of aptamers for in vivo molecular imaging and theranostics. Adv Drug Deliv Rev. 2018;134:94-106. https://doi.org/10.1016/j.addr.2018.08.004
  14. Efremenkov VM. Radioactive waste management at nuclear power plants. IAEA Bulletin. 1989;31(4):37-42.
  15. Sanchez-Marquez JA, Fuentes-Ramirez R, Cano-Rodriguez I, Gamino-Arroyo Z, Rubio-Rosas E, Kenny JM, et al. Membrane made of cellulose acetate with polyacrylic acid reinforced with carbon nanotubes and its applicability for chromium removal. Int J Polym Sci. 2015;2015:320631.
  16. Shelkovnikova LA, Kargov SI, Gavlina OT, Ivanov VA, Al'tshuler GN. Selectivity of ion exchangers in extracting cesium and rubidium from alkaline solutions. Russian J Phys Chem A. 2013;87(1):125-128. https://doi.org/10.1134/S0036024413010251
  17. Awual MR, Yaita T, Miyazaki Y, Matsumura D, Shiwaku H, Taguchi T. A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater. Sci Rep. 2016;6:19937.
  18. Lalhmunsiama L, Kim JG, Choi SS, Lee SM. Recent advances in adsorption removal of cesium from aquatic environment. Appl Chem Eng. 2018;29(2):127-137.
  19. Wang J, Zhuang S. Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes. Nucl Eng Technol. 2020;52(2):328-336. https://doi.org/10.1016/j.net.2019.08.001
  20. Jeddi I, Saiz L. Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors. Sci Rep. 2017;7(1):1178.
  21. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 7th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012.
  22. Schuemann J, McNamara AL, Warmenhoven JW, Henthorn NT, Kirkby KJ, Merchant MJ, et al. A new standard DNA damage (SDD) data format. Radiat Res. 2019;191(1):76-92. https://doi.org/10.1667/RR15209.1
  23. Pelowitz DB. MCNP6 user's manual version 1.0: LA-CP-13-00634 Rev. 0. Los Alamos, NM: Los Alamos National Laboratory; 2013.
  24. Semenenko VA, Stewart RD. A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res. 2004;161(4):451-457. https://doi.org/10.1667/RR3140
  25. Semenenko VA, Stewart RD. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys Med Biol. 2006;51(7):1693-1706. https://doi.org/10.1088/0031-9155/51/7/004
  26. Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH, Carlson DJ. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res. 2011;176(5):587-602. https://doi.org/10.1667/RR2663.1
  27. Kalospyros SA, Gika V, Nikitaki Z, Kalamara A, Kyriakou I, Emfietzoglou D, et al. Monte Carlo simulation-based calculations of complex DNA damage for incidents of environmental ionizing radiation exposure. Appl Sci. 2021;11(19):8985.
  28. Cooke C, Spann H. Reactor vessel and reactor vessel internals segmentation at Zion nuclear power station-13230. Conference: WM2013: Waste Management Conference: International collaboration and continuous improvement; 2013 Feb 24-28; Phoenix, AZ. Available from: https://www.osti.gov/biblio/22224983.
  29. Hwang YH, Hwang S, Hong S, Park KS, Kim NK, Jung DW et al. A study on segmentation process of the K1 reactor vessel and internals. J Nucl Fuel Cycle Waste Technol. 2019;17(4):437-445. https://doi.org/10.7733/jnfcwt.2019.17.4.437
  30. Volmert B, Bykov V, Petrovic D, Kickhofel J, Amosova N, Kim JH, et al. Illustration of Nagra's AMAC approach to Kori-1 NPP decommissioning based on experience from its detailed application to Swiss NPPs. Nucl Eng Technol. 2021;53(5):1491-1510. https://doi.org/10.1016/j.net.2020.10.010
  31. Evans JC, Lepel EL, Sanders RW, Wilkerson CL, Silker W, Thomas CW, et al. Long-lived activation products in reactor materials: NUREG/CR-3474 [Internet]. Richland, WA: Pacific Northwest Lab.; 1984 [cited 2023 Jan 10]. Available from: https://doi.org/10.2172/6776358.
  32. International Atomic Energy Agency. Decontamination and demolition of concrete and metal structures during the decommissioning of nuclear facilities. IAEA Technical report series No. 286. Vienna, Austria: International Atomic Energy Agency; 1988.
  33. Remark JF. A review of plant decontamination methods: EPRI -NP-6169 [Internet]. Palo Alto, CA: Electric Power Research Institute; 1988 [cited 2023 Jan 10]. Available from: https://doi.org/10.2172/6625352.
  34. Larsson H, Anunti A, Edelborg M. Decommissioning study of Oskarshamn NPP [Internet]. Stockholm, Sweden: Svensk Kambranslehantering AB; 2013 [cited 2023 Jan 10]. Available from: https://www.skb.com/publication/2625263.
  35. U.S. Nuclear Regulation Commission. Trojan nuclear plant: radiological site characterization report: ML003670710 [Internet]. Washington, DC: NRC; 1995 [cited 2023 Jan 10]. Available from: https://www.nrc.gov/docs/ML0036/ML003670710.pdf.
  36. Piedade JA, Oliveira PS, Lopes MC, Oliveira-Brett AM. Voltammetric determination of gamma radiation-induced DNA damage. Anal Biochem. 2006;355(1):39-49. https://doi.org/10.1016/j.ab.2006.05.022
  37. Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, et al. Essential cell biology. 4th ed. New York, NY: Garland Science;2014.