Acknowledgement
This study was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI18C1216).
References
- Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International journal of computer vision 115 (2015): 211-252. doi: https://doi.org/10.1007/s11263-015-0816-y
- Choy, Garry, et al. "Current applications and future impact of machine learning in radiology." Radiology 288.2 (2018): 318-328. doi: https://doi.org/10.1148/radiol.2018171820.
- Allen Jr, Bibb, et al. "A road map for translational research on artificial intelligence in medical imaging: from the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop." Journal of the American College of Radiology 16.9 (2019): 1179-1189. doi: https://doi.org/10.1016/j.jacr.2019.04.014.
- Gauriau, Romane, et al. "Using DICOM metadata for radiological image series categorization: a feasibility study on large clinical brain MRI datasets." Journal of digital imaging 33 (2020): 747-762. doi: https://doi.org/10.1007/s10278-019-00308-x.
- Cho, Junghwan, et al. "How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?." arXiv preprint arXiv:1511.06348 (2015). https://doi.org/10.48550/arXiv.1511.06348
- Roth, Holger R., et al. "Anatomy-specific classification of medical images using deep convolutional nets." 2015 IEEE 12th international symposium on biomedical imaging (ISBI). IEEE, 2015. doi: https://doi.org/10.1109/ISBI.2015.7163826
- Bae, Kyongtae T. "Intravenous contrast medium administration and scan timing at CT: considerations and approaches." Radiology 256.1 (2010): 32-61. doi: https://doi.org/10.1148/radiol.10090908.
- Hamlin, Derek J., F. A. Burgener, and J. B. Beecham. "CT of intramural endometrial carcinoma: contrast enhancement is essential." American Journal of Roentgenology 137.3 (1981): 551-554. doi: https://doi.org/10.2214/ajr.137.3.551.
- Sugimori, Hiroyuki. "Classification of computed tomography images in different slice positions using deep learning." Journal of healthcare engineering 2018 (2018). doi: https://doi.org/10.1155/2018/1753480.
- Philbrick, Kenneth A., et al. "What does deep learning see? Insights from a classifier trained to predict contrast enhancement phase from CT images." American Journal of Roentgenology 211.6 (2018): 1184-1193. doi: https://doi.org/10.2214/ajr.18.20331.
- Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual connections on learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 31. No. 1. 2017. doi: https://doi.org/10.1609/aaai.v31i1.11231