• Title/Summary/Keyword: two-dimensional convert method

Search Result 21, Processing Time 0.039 seconds

NUMERICAL SOLUTION OF A CLASS OF TWO-DIMENSIONAL NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

  • Tari, Abolfazl;Shahmorad, Sedaghat
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.463-475
    • /
    • 2012
  • In this work, we investigate solving two-dimensional nonlinear Volterra integral equations of the first kind (2DNVIEF). Here we convert 2DNVIEF to the two-dimensional linear Volterra integral equations of the first kind (2DLVIEF) and then we solve it by using operational approach of the Tau method. But for solving the 2DLVIEF we convert it to an equivalent equation of the second kind and then by giving some theorems we formulate the operational Tau method with standard base for solving the equation of the second kind. Finally, some numerical examples are given to clarify the efficiency and accuracy of presented method.

An improved 2D/3D convertible integral imaging with two parallel display devices

  • Choi, Hee-Jin;Park, Jae-Hyeung;Kim, Joo-Hwan;Cho, Seong-Woo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.46-49
    • /
    • 2005
  • In this paper, a novel 2D/3D convertible display system based on integral imaging is proposed. Combining two liquid crystal display panels with integral imaging, it is possible to convert the display between two-dimensional mode and three-dimensional mode without mechanical movement. The proposed method is proven by preliminary experiments.

  • PDF

Crop-row Detection by Color Line Sensor

  • Ha, S.ta;T.Kobaysahi;K.Sakai
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.353-362
    • /
    • 1993
  • The purpose of this study is to develop a crop-row detector which can be applied to an automatic row following control for cultivators or thinning machines. In this report, a possibility of new crop-row detecting method was discussed. This detecting method consists of two principal means. One is the hardware means to convert the two dimensional crop-row vision to the compacted one dimensional information. The conversion is achieved by a color line sensor and a rotating mirror. In order to extract crop-row , R and G signals of RGB color system are used. The locations of two different points on the target row are detected by this means. Another is the software means to estimate the offset value and the heading angle between the detector and the target row which can be assumed as a straight line. As a result of discussion, it was concluded that this detecting method would be accurate enough for practical use.

  • PDF

Two-Dimensional Trajectory Optimization for Soft Lunar Landing Considering a Landing Site

  • Park, Bong-Gyun;Ahn, Jong-Sun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.288-295
    • /
    • 2011
  • This paper addresses minimum-fuel, two-dimensional trajectory optimization for a soft lunar landing from a parking orbit to a desired landing site. The landing site is usually not considered when performing trajectory optimization so that the landing problem can be handled. However, for precise trajectories for landing at a desired site to be designed, the landing site has to be considered as the terminal constraint. To convert the trajectory optimization problem into a parameter optimization problem, a pseudospectral method was used, and C code for feasible sequential quadratic programming was used as a numerical solver. To check the reliability of the results obtained, a feasibility check was performed.

Adaptive thresholding for two-dimensional barcode images using two thresholds and the integral image (이중 문턱 값과 적분영상을 이용한 2차원 바코드 영상의 적응적 이진화)

  • Lee, Yeon-Kyung;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2453-2458
    • /
    • 2012
  • In this paper, we propose an adaptive thresholding method to binarize two-dimensional barcode images. Adaptive thresholding methods that minimize light effects convert an original image into a binary image. The methods are applied to document image binarization. The methods, however, have problems of determining box size used in adaptive thresholding. thus, they inappropriate to use in recognition of two-dimensional barcode images. To overcome the problem, we analysis the problem and propose a new adaptive threshold method using the integral image. To show the effectiveness of our method, we compared our method with the well-known existing methods in terms of visual quality and processing time. The experimental result indicates that the proposed method is superior to the existing method.

Improved Face Recognition based on 2D-LDA using Weighted Covariance Scatter (가중치가 적용된 공분산을 이용한 2D-LDA 기반의 얼굴인식)

  • Lee, Seokjin;Oh, Chimin;Lee, Chilwoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1446-1452
    • /
    • 2014
  • Existing LDA uses the transform matrix that maximizes distance between classes. So we have to convert from an image to one-dimensional vector as training vector. However, in 2D-LDA, we can directly use two-dimensional image itself as training matrix, so that the classification performance can be enhanced about 20% comparing LDA, since the training matrix preserves the spatial information of two-dimensional image. However 2D-LDA uses same calculation schema for transformation matrix and therefore both LDA and 2D-LDA has the heteroscedastic problem which means that the class classification cannot obtain beneficial information of spatial distances of class clusters since LDA uses only data correlation-based covariance matrix of the training data without any reference to distances between classes. In this paper, we propose a new method to apply training matrix of 2D-LDA by using WPS-LDA idea that calculates the reciprocal of distance between classes and apply this weight to between class scatter matrix. The experimental result shows that the discriminating power of proposed 2D-LDA with weighted between class scatter has been improved up to 2% than original 2D-LDA. This method has good performance, especially when the distance between two classes is very close and the dimension of projection axis is low.

Sleep apnea detection from a single-lead ECG signal with GAF transform feature-extraction through deep learning (GAF 변환을 사용한 딥 러닝 기반 단일 리드 ECG 신호에서의 수면 무호흡 감지)

  • Zhou, Yu;Lee, Seungeun;Kang, Kyungtae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.57-58
    • /
    • 2022
  • Sleep apnea (SA) is a common chronic sleep disorder that disrupts breathing during sleep. Clinically, the standard for diagnosing SA involves nocturnal polysomnography (PSG). However, this requires expert human intervention and considerable time, which limits the availability of SA diagnoses in public health sectors. Therefore, ECG-based methods for SA detection have been proposed to automate the PSG procedure and reduce its discomfort. We propose a preprocessing method to convert the one-dimensional time series of ECG into two-dimensional images using the Gramian Angular Field (GAF) algorithm, extract temporal features, and use a two-dimensional convolutional neural network for classification. The results of this study demonstrated that the proposed method can perform SA detection with specificity, sensitivity, accuracy, and area under the curve (AUC) of 88.89%, 81.50%, 86.11%, and 0.85, respectively. Our experimental results show that SA is successfully classified by extracting preprocessing transforms with temporal features.

  • PDF

The Interactive Modeling Method of Virtual City Scene Based on Building Codes

  • Ding, Wei-long;Zhu, Xiao-jie;Xu, Bin;Xu, Yan;Chen, Kai;Wan, Zang-xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.74-89
    • /
    • 2021
  • For higher-level requirements of urban planning and management and the recent development of "digital earth" and "digital city", it is urgent to establish protocols for the construction of three-dimensional digital city models. However, some problems still exist in the digital technology of the three-dimensional city model, such as insufficient precision of the three-dimensional model, not optimizing the scene and not considering the constraints of building codes. In view of those points, a method to interactively simulate a virtual city scene based on building codes is proposed in this paper. Firstly, some constraint functions are set up to restrict the models to adhere to the building codes, and an improved directional bounding box technique is utilized to solve the problem that geometric objects may intersect in a virtual city scene. The three-dimensional model invocation strategy is designed to convert two-dimensional layouts to a three-dimensional urban scene. A Leap Motion hardware device is used to interactively place the 3D models in a virtual scene. Finally, the design and construction of the three-dimensional scene are completed by using Unity3D. The experiment shows that this method can simulate urban virtual scenes that strictly adhere to building codes in a virtual scene of the city environment, but also provide information and decision-making functions for urban planning and management.

Three-Dimensional Conversion of Two-Dimensional Movie Using Optical Flow and Normalized Cut (Optical Flow와 Normalized Cut을 이용한 2차원 동영상의 3차원 동영상 변환)

  • Jung, Jae-Hyun;Park, Gil-Bae;Kim, Joo-Hwan;Kang, Jin-Mo;Lee, Byoung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • We propose a method to convert a two-dimensional movie to a three-dimensional movie using normalized cut and optical flow. In this paper, we segment an image of a two-dimensional movie to objects first, and then estimate the depth of each object. Normalized cut is one of the image segmentation algorithms. For improving speed and accuracy of normalized cut, we used a watershed algorithm and a weight function using optical flow. We estimate the depth of objects which are segmented by improved normalized cut using optical flow. Ordinal depth is estimated by the change of the segmented object label in an occluded region which is the difference of absolute values of optical flow. For compensating ordinal depth, we generate the relational depth which is the absolute value of optical flow as motion parallax. A final depth map is determined by multiplying ordinal depth by relational depth, then dividing by average optical flow. In this research, we propose the two-dimensional/three-dimensional movie conversion method which is applicable to all three-dimensional display devices and all two-dimensional movie formats. We present experimental results using sample two-dimensional movies.

Finite Element Analysis of Lumbar Spine under Surgical Condition (척추 수술시 요추의 유한요소해석)

  • Kim D. H.;Cho S. H.;Jang D. P.;Hwang W;Chung W. K;Oh S. H.;Kim Y. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.210-213
    • /
    • 2004
  • We study the fracture behavior of the lumbar No.4 and No.5 vertebra subjected to posteroanterior (PA) forces, a three dimensional finite element method (FEM). The lumbar spine was modeled 3-dimensionally using commercial software based on the principle of convert stacked two dimensional CT scan images into three dimensional shapes. Determination of the boundary conditions corresponding to actual surgical conditions was not easy, so that the simplified spine beam analyses were performed. The results were used in three dimensional finite element (FE) analysis. This FE analysis, indicates that the fracture loads of the lumbar No.4 and No.5 vertebra are respectively 1550 N and 1500 N. These fracture loads are for static loading, but in actual conditions the load on the lumbar spine varies dynamically. We found that the fracture load of lumbar No.4 vertebra is larger than that of lumbar No.5 vertebra, as a result of the total stress difference by the moment.

  • PDF