Acknowledgement
This work is financially supported by Korea Ministry of Environment (MOE) as 「Graduate School specialized in Climate Change.
References
- D. Shin, "Health Effects of Ambient Particulate Matter", Joarnal of Korean Medical Association, Vol.50, No.2, , pp.175-182, 2007. doi: https://doi.org/10.5124/jkma.2007.50.2.175
- G. Shin, J. Kim, and Y. Choi, "A Study on the Data Model Design of Fine Dust Related Disease", Jounal of The Korea Society of Information Technology Policy & Management (ITPM), Vol.10, No.1. pp.655-659, 2018. http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/31956
- D. Loomis et al., "The carcinogenicity of outdoor air pollution.", Lancet Oncology, Vol.14, No.13, pp.1262 ,2013. doi: https://doi.org/10.1016/S1470-2045(13)70487-X
- J. Park, Y. Park, E. Lee and K. Lee, "Analysis on the Effects of Particular Matter Distribution on the Number of Outpatient Visits for Allergic Rhinitis", Health Policy and Management Vol.30, No.1, pp.50-61, 2020. doi: https://doi.org/10.4332/KJHPA.2020.30.1.50
- W. Jung, "South Korea's Air Pollution: Gasping for Solutions", Policy Brief, Vol.199, pp.1-4, 2017.
- S. Jeon, and Y. Son, "Prediction of fine dust PM 10 using a deep neural network model", The Korean journal of applied statistics, Vol.31, No.2, pp.265-285, 2018 doi: https://doi.org/10.5351/KJAS.2018.31.2.265
- P. Soh, J. Chang, and J. Huang, "Adaptive deep learning-based air quality prediction model using the most relevant spatial-temporal relations", Ieee Access, Vol.6, pp.38186-38199, 2018. doi: https://doi.org/10.1109/ACCESS.2018.2849820
- S. Kim, J. Lee, and J. Seo, "Deep-dust: Predicting concentrations of fine dust in Seoul using LSTM", arXiv preprint arXiv:1901.10106, 2019. doi: https://doi.org/10.48550/arXiv.1901.10106
- Z. Joharestani et al.,"PM prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data", Atmosphere, Vol.10, No.7, pp.373, 2019. doi: https://doi.org/10.3390/atmos10070373
- T. Xayasouk, H. Lee, and G. Lee, "Air pollution prediction using long short-term memory (LSTM) and deep autoencoder (DAE) models", Sustainability, Vol.12, No.6, pp. 2570, 2020. doi: https://doi.org/10.3390/su12062570
- K. Lee, W. Hwang, and M. Choi, "Design of a 1-D CRNN Model for Prediction of Fine Dust Risk Level", The Society of Digital Policy and Management, Vol.19, No.2, pp.215-220, 2021. doi: https://doi.org/10.14400/JDC.2021.19.2.215
- H. Kim, and T. Moon, "Machine learning-based Fine Dust Prediction Model using Meteorological data and Fine Dust data", Vol.24, No.1, pp.92-111, 2021. doi: https://doi.org/10.11108/kagis.2021.24.1.092
- G. Park, "Discovering a fine dust pathway via directed acyclic graphical models", Journal of the Korean Data & Information Science Society, Vol.30, No.1, pp.67-76, 2019. doi: https://doi.org/10.7465/jkdi.2019.30.1.67
- A. Dairi et al., "Integrated multiple directed attention-based deep learning for improved air pollution forecasting", IEEE Transactions on Instrumentation and Measurement, Vol.70, pp.1-15, 2021. doi: https://doi.org/10.1109/TIM.2021.3091511
- S. Jo, M. Jeong, J. Lee, I. Oh, and Y. Han, "Analysis of Correlation of Wind Direction/Speed and Particulate Matter(PM10) and Prediction of Particulate Matter Using LSTM", Proceeding of Korean Institute of Information Scientists and Engineers, pp.1649-1651, 2020.
- H. Zhou et al., "Informer: Beyond efficient transformer for long sequence time-series forecasting", Proceedings of the AAAI conference on artificial intelligence, Vol.35, No.12, pp.11106-111115, 2021. doi: https://doi.org/10.1609/aaai.v35i12.17325