DOI QR코드

DOI QR Code

Phosphatase Ssu72 Is Essential for Homeostatic Balance Between CD4+ T Cell Lineages

  • Min-Hee Kim (Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Chang-Woo Lee (Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2022.08.09
  • Accepted : 2022.12.21
  • Published : 2023.04.30

Abstract

Ssu72, a dual-specificity protein phosphatase, not only participates in transcription biogenesis, but also affects pathophysiological functions in a tissue-specific manner. Recently, it has been shown that Ssu72 is required for T cell differentiation and function by controlling multiple immune receptor-mediated signals, including TCR and several cytokine receptor signaling pathways. Ssu72 deficiency in T cells is associated with impaired fine-tuning of receptor-mediated signaling and a defect in CD4+ T cell homeostasis, resulting in immune-mediated diseases. However, the mechanism by which Ssu72 in T cells integrates the pathophysiology of multiple immune-mediated diseases is still poorly elucidated. In this review, we will focus on the immunoregulatory mechanism of Ssu72 phosphatase in CD4+ T cell differentiation, activation, and phenotypic function. We will also discuss the current understanding of the correlation between Ssu72 in T cells and pathological functions which suggests that Ssu72 might be a therapeutic target in autoimmune disorders and other diseases.

Keywords

Acknowledgement

This work was supported by grants (NRF-2022M3A9H1014129 and NRF-2022R1A2B5B03001431) of National Research Foundation (NSF) funded by the Ministry of Education, Science, and Technology (MEST), Republic of Korea.

References

  1. He X, Khan AU, Cheng H, Pappas DL Jr, Hampsey M, Moore CL. Functional interactions between the transcription and mRNA 3' end processing machineries mediated by Ssu72 and Sub1. Genes Dev 2003;17:1030-1042.  https://doi.org/10.1101/gad.1075203
  2. Dichtl B, Blank D, Ohnacker M, Friedlein A, Roeder D, Langen H, Keller W. A role for Ssu72 in balancing RNA polymerase II transcription elongation and termination. Mol Cell 2002;10:1139-1150.  https://doi.org/10.1016/S1097-2765(02)00707-4
  3. Xiang K, Nagaike T, Xiang S, Kilic T, Beh MM, Manley JL, Tong L. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 2010;467:729-733.  https://doi.org/10.1038/nature09391
  4. Kim HS, Kim SH, Park HY, Lee J, Yoon JH, Choi S, Ryu SH, Lee H, Cho HS, Lee CW. Functional interplay between Aurora B kinase and Ssu72 phosphatase regulates sister chromatid cohesion. Nat Commun 2013;4:2631. 
  5. St-Pierre B, Liu X, Kha LC, Zhu X, Ryan O, Jiang Z, Zacksenhaus E. Conserved and specific functions of mammalian Ssu72. Nucleic Acids Res 2005;33:464-477.  https://doi.org/10.1093/nar/gki171
  6. Hwang S, Kim MH, Lee CW. Ssu72 dual-specific protein phosphatase: from gene to diseases. Int J Mol Sci 2021;22:3791. 
  7. Kim HS, Jeon Y, Jang YO, Lee H, Shin Y, Lee CW. Mammalian Ssu72 phosphatase preferentially considers tissue-specific actively transcribed gene expression by regulating RNA Pol II transcription. Theranostics 2022;12:186-206.  https://doi.org/10.7150/thno.62274
  8. Kim SH, Jeon Y, Kim HS, Lee JK, Lim HJ, Kang D, Cho H, Park CK, Lee H, Lee CW. Hepatocyte homeostasis for chromosome ploidization and liver function is regulated by Ssu72 protein phosphatase. Hepatology 2016;63:247-259.  https://doi.org/10.1002/hep.28281
  9. Kim HS, Yoon JS, Jeon Y, Park EJ, Lee JK, Chen S, Lee H, Park JY, Go H, Lee CW. Ssu72-HNF4α signaling axis classify the transition from steatohepatitis to hepatocellular carcinoma. Cell Death Differ 2022;29:600-613.  https://doi.org/10.1038/s41418-021-00877-x
  10. Ko JS, Jeong D, Koh J, Jung H, Jung KC, Jeon YK, Kim HY, Yi EC, Lee H, Lee CW, et al. Ssu72 phosphatase directly binds to ZAP-70, thereby providing fine-tuning of TCR signaling and preventing spontaneous inflammation. Proc Natl Acad Sci U S A 2021;118:e2102374118. 
  11. Lee JK, Koo SY, Nam HM, Lee JB, Ko J, Kim KM, Park EJ, Kim TJ, Lee H, Go H, et al. Ssu72 is a T-cell receptor-responsive modifier that is indispensable for regulatory T cells. Cell Mol Immunol 2021;18:1395-1411.  https://doi.org/10.1038/s41423-021-00671-2
  12. Woo YD, Koh J, Ko JS, Kim S, Jung KC, Jeon YK, Kim HY, Lee H, Lee CW, Chung DH. Ssu72 regulates alveolar macrophage development and allergic airway inflammation by fine-tuning of GM-CSF receptor signaling. J Allergy Clin Immunol 2021;147:1242-1260.  https://doi.org/10.1016/j.jaci.2020.07.038
  13. Lee SH, Kim EK, Kwon JE, Lee JK, Lee D, Kim SY, Seo HB, Na HS, Jung K, Kwok SK, et al. Ssu72 attenuates autoimmune arthritis via targeting of STAT3 signaling and Th17 activation. Sci Rep 2017;7:5506. 
  14. Pike KA, Tremblay ML. Protein tyrosine phosphatases: regulators of CD4 T cells in inflammatory bowel disease. Front Immunol 2018;9:2504. 
  15. Vang T, Miletic AV, Arimura Y, Tautz L, Rickert RC, Mustelin T. Protein tyrosine phosphatases in autoimmunity. Annu Rev Immunol 2008;26:29-55.  https://doi.org/10.1146/annurev.immunol.26.021607.090418
  16. Lee HG, Cho MZ, Choi JM. Bystander CD4+ T cells: crossroads between innate and adaptive immunity. Exp Mol Med 2020;52:1255-1263.  https://doi.org/10.1038/s12276-020-00486-7
  17. O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 2010;327:1098-1102. https://doi.org/10.1126/science.1178334
  18. Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity 2009;30:646-655.  https://doi.org/10.1016/j.immuni.2009.05.001
  19. Gaud G, Lesourne R, Love PE. Regulatory mechanisms in T cell receptor signalling. Nat Rev Immunol 2018;18:485-497.  https://doi.org/10.1038/s41568-018-0010-y
  20. DuPage M, Bluestone JA. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat Rev Immunol 2016;16:149-163.  https://doi.org/10.1038/nri.2015.18
  21. Loo TT, Gao Y, Lazarevic V. Transcriptional regulation of CD4+ TH cells that mediate tissue inflammation. J Leukoc Biol 2018;104:1069-1085.  https://doi.org/10.1002/JLB.1RI0418-152RR
  22. Levine AG, Mendoza A, Hemmers S, Moltedo B, Niec RE, Schizas M, Hoyos BE, Putintseva EV, Chaudhry A, Dikiy S, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 2017;546:421-425.  https://doi.org/10.1038/nature22360
  23. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997;89:587-596.  https://doi.org/10.1016/S0092-8674(00)80240-8
  24. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006;126:1121-1133.  https://doi.org/10.1016/j.cell.2006.07.035
  25. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4:330-336.  https://doi.org/10.1038/ni904
  26. Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell function in cancer. Nat Rev Immunol 2016;16:599-611.  https://doi.org/10.1038/nrc.2016.72
  27. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006;24:677-688.  https://doi.org/10.1016/j.immuni.2006.06.002
  28. Constant S, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J Exp Med 1995;182:1591-1596.  https://doi.org/10.1084/jem.182.5.1591
  29. van Panhuys N, Klauschen F, Germain RN. T-cell-receptor-dependent signal intensity dominantly controls CD4+ T cell polarization in vivo. Immunity 2014;41:63-74.  https://doi.org/10.1016/j.immuni.2014.06.003
  30. Gottschalk RA, Corse E, Allison JP. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J Exp Med 2010;207:1701-1711.  https://doi.org/10.1084/jem.20091999
  31. Turner MS, Kane LP, Morel PA. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. J Immunol 2009;183:4895-4903.  https://doi.org/10.4049/jimmunol.0901459
  32. Bhattacharyya ND, Feng CG. Regulation of T helper cell fate by TCR signal strength. Front Immunol 2020;11:624. 
  33. Ray JP, Marshall HD, Laidlaw BJ, Staron MM, Kaech SM, Craft J. Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity 2014;40:367-377.  https://doi.org/10.1016/j.immuni.2014.02.005
  34. Stritesky GL, Muthukrishnan R, Sehra S, Goswami R, Pham D, Travers J, Nguyen ET, Levy DE, Kaplan MH. The transcription factor STAT3 is required for T helper 2 cell development. Immunity 2011;34:39-49.  https://doi.org/10.1016/j.immuni.2010.12.013
  35. Liao W, Lin JX, Wang L, Li P, Leonard WJ. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol 2011;12:551-559.  https://doi.org/10.1038/ni.2030
  36. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Hennighausen L, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007;26:371-381. https://doi.org/10.1016/j.immuni.2007.02.009
  37. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl R, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 2007;109:4368-4375.  https://doi.org/10.1182/blood-2006-11-055756
  38. Villarino AV, Kanno Y, O'Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 2017;18:374-384.  https://doi.org/10.1038/ni.3691
  39. Johnson DJ, Pao LI, Dhanji S, Murakami K, Ohashi PS, Neel BG. Shp1 regulates T cell homeostasis by limiting IL-4 signals. J Exp Med 2013;210:1419-1431.  https://doi.org/10.1084/jem.20122239
  40. Spalinger MR, Kasper S, Chassard C, Raselli T, Frey-Wagner I, Gottier C, Lang S, Atrott K, Vavricka SR, Mair F, et al. PTPN2 controls differentiation of CD4+ T cells and limits intestinal inflammation and intestinal dysbiosis. Mucosal Immunol 2015;8:918-929.  https://doi.org/10.1038/mi.2014.122
  41. Lu D, Liu L, Ji X, Gao Y, Chen X, Liu Y, Liu Y, Zhao X, Li Y, Li Y, et al. The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates TH17 differentiation. Nat Immunol 2015;16:1263-1273.  https://doi.org/10.1038/ni.3278
  42. Wu X, Guo W, Wu L, Gu Y, Gu L, Xu S, Wu X, Shen Y, Ke Y, Tan R, et al. Selective sequestration of STAT1 in the cytoplasm via phosphorylated SHP-2 ameliorates murine experimental colitis. J Immunol 2012;189:3497-3507.  https://doi.org/10.4049/jimmunol.1201006
  43. Mustelin T, Vang T, Bottini N. Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 2005;5:43-57.  https://doi.org/10.1038/nri1530
  44. Gharibi T, Babaloo Z, Hosseini A, Abdollahpour-Alitappeh M, Hashemi V, Marofi F, Nejati K, Baradaran B. Targeting STAT3 in cancer and autoimmune diseases. Eur J Pharmacol 2020;878:173107. 
  45. Stanford SM, Rapini N, Bottini N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology 2012;137:1-19.  https://doi.org/10.1111/j.1365-2567.2012.03591.x
  46. Courtney AH, Lo WL, Weiss A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem Sci 2018;43:108-123.  https://doi.org/10.1016/j.tibs.2017.11.008
  47. Hwang JR, Byeon Y, Kim D, Park SG. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020;52:750-761.  https://doi.org/10.1038/s12276-020-0435-8
  48. Mathur AN, Chang HC, Zisoulis DG, Stritesky GL, Yu Q, O'Malley JT, Kapur R, Levy DE, Kansas GS, Kaplan MH. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 2007;178:4901-4907.  https://doi.org/10.4049/jimmunol.178.8.4901
  49. Stark GR, Darnell JE Jr. The JAK-STAT pathway at twenty. Immunity 2012;36:503-514.  https://doi.org/10.1016/j.immuni.2012.03.013
  50. Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 2018;15:234-248.  https://doi.org/10.1038/nrclinonc.2018.8
  51. Xiao Y, Zou Q, Xie X, Liu T, Li HS, Jie Z, Jin J, Hu H, Manyam G, Zhang L, et al. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity. J Exp Med 2017;214:1493-1507.  https://doi.org/10.1084/jem.20161524
  52. Guo J, Kim D, Gao J, Kurtyka C, Chen H, Yu C, Wu D, Mittal A, Beg AA, Chellappan SP, et al. IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small cell lung cancer. Oncogene 2013;32:151-159.  https://doi.org/10.1038/onc.2012.39
  53. Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 2014;70:11-20.  https://doi.org/10.1016/j.cyto.2014.05.024
  54. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 2008;29:44-56.  https://doi.org/10.1016/j.immuni.2008.05.007
  55. Pereira LM, Gomes ST, Ishak R, Vallinoto AC. Regulatory T cell and forkhead box protein 3 as modulators of immune homeostasis. Front Immunol 2017;8:605.
  56. Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev 2014;259:88-102.  https://doi.org/10.1111/imr.12160
  57. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012;30:531-564.  https://doi.org/10.1146/annurev.immunol.25.022106.141623
  58. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh CS. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011;478:250-254.  https://doi.org/10.1038/nature10434
  59. Yadav M, Stephan S, Bluestone JA. Peripherally induced Tregs - role in immune homeostasis and autoimmunity. Front Immunol 2013;4:232. 
  60. Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J. Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules 2017;22:22. 
  61. Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 2001;70:281-312.  https://doi.org/10.1146/annurev.biochem.70.1.281
  62. Fu G, Chen Y, Yu M, Podd A, Schuman J, He Y, Di L, Yassai M, Haribhai D, North PE, et al. Phospholipase Cγ1 is essential for T cell development, activation, and tolerance. J Exp Med 2010;207:309-318.  https://doi.org/10.1084/jem.20090880
  63. Chen Y, Haines CJ, Gutcher I, Hochweller K, Blumenschein WM, McClanahan T, Hammerling G, Li MO, Cua DJ, McGeachy MJ. Foxp3+ regulatory T cells promote T helper 17 cell development in vivo through regulation of interleukin-2. Immunity 2011;34:409-421.  https://doi.org/10.1016/j.immuni.2011.02.011
  64. Zheng SG, Wang J, Horwitz DA. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 2008;180:7112-7116.  https://doi.org/10.4049/jimmunol.180.11.7112
  65. Schlenner SM, Weigmann B, Ruan Q, Chen Y, von Boehmer H. Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J Exp Med 2012;209:1529-1535.  https://doi.org/10.1084/jem.20112646
  66. Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol 2017;17:703-717.  https://doi.org/10.1038/nri.2017.75
  67. Xu L, Kitani A, Strober W. Molecular mechanisms regulating TGF-beta-induced Foxp3 expression. Mucosal Immunol 2010;3:230-238.  https://doi.org/10.1038/mi.2010.7
  68. Choi G, Na H, Kuen DS, Kim BS, Chung Y. Autocrine TGF-β1 Maintains the stability of Foxp3+ regulatory T cells via IL-12Rβ2 downregulation. Biomolecules 2020;10:819. 
  69. Tran DQ. TGF-β: the sword, the wand, and the shield of FOXP3+ regulatory T cells. J Mol Cell Biol 2012;4:29-37.  https://doi.org/10.1093/jmcb/mjr033
  70. Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM, Paulos CM. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol 2018;15:458-469.  https://doi.org/10.1038/s41423-018-0004-4
  71. Paradowska-Gorycka A, Wajda A, Romanowska-Prochnicka K, Walczuk E, Kuca-Warnawin E, Kmiolek T, Stypinska B, Rzeszotarska E, Majewski D, Jagodzinski PP, et al. Th17/Treg-related transcriptional factor expression and cytokine profile in patients with rheumatoid arthritis. Front Immunol 2020;11:572858. 
  72. Ghoreschi K, Laurence A, Yang XP, Hirahara K, O'Shea JJ. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol 2011;32:395-401.  https://doi.org/10.1016/j.it.2011.06.007
  73. Lee GR. The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci 2018;19:730. 
  74. Manel N, Unutmaz D, Littman DR. The differentiation of human TH-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORγt. Nat Immunol 2008;9:641-649.  https://doi.org/10.1038/ni.1610
  75. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235-238. https://doi.org/10.1038/nature04753
  76. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 2009;326:986-991.  https://doi.org/10.1126/science.1172702
  77. Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013;38:13-25.  https://doi.org/10.1016/j.immuni.2013.01.004
  78. Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol 2016;16:295-309.  https://doi.org/10.1038/nri.2016.36
  79. Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010;140:845-858.  https://doi.org/10.1016/j.cell.2010.02.021
  80. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med 2009;361:2066-2078.  https://doi.org/10.1056/NEJMra0804647
  81. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 2007;369:1641-1657.  https://doi.org/10.1016/S0140-6736(07)60751-X
  82. Globig AM, Hennecke N, Martin B, Seidl M, Ruf G, Hasselblatt P, Thimme R, Bengsch B. Comprehensive intestinal T helper cell profiling reveals specific accumulation of IFN-γ+IL-17+coproducing CD4+ T cells in active inflammatory bowel disease. Inflamm Bowel Dis 2014;20:2321-2329.  https://doi.org/10.1097/MIB.0000000000000210
  83. Kobayashi T, Okamoto S, Hisamatsu T, Kamada N, Chinen H, Saito R, Kitazume MT, Nakazawa A, Sugita A, Koganei K, et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut 2008;57:1682-1689.  https://doi.org/10.1136/gut.2007.135053
  84. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003;52:65-70.  https://doi.org/10.1136/gut.52.1.65
  85. Hovhannisyan Z, Treatman J, Littman DR, Mayer L. Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology 2011;140:957-965.  https://doi.org/10.1053/j.gastro.2010.12.002
  86. Ueno A, Jijon H, Chan R, Ford K, Hirota C, Kaplan GG, Beck PL, Iacucci M, Fort Gasia M, Barkema HW, et al. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflamm Bowel Dis 2013;19:2522-2534.  https://doi.org/10.1097/MIB.0b013e3182a85709
  87. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 2014;104:15.25.1-15.25.14.  https://doi.org/10.1002/0471142735.im1525s104
  88. Omenetti S, Pizarro TT. The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol 2015;6:639. 
  89. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003;423:356-361.  https://doi.org/10.1038/nature01661
  90. Niu Q, Cai B, Huang ZC, Shi YY, Wang LL. Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol Int 2012;32:2731-2736.  https://doi.org/10.1007/s00296-011-1984-x
  91. Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, Vetrano S, Vande Casteele N. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020;17:323-337.  https://doi.org/10.1038/s41575-020-0273-0
  92. Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, Warner JD, Tanaka M, Steward-Tharp SM, Gadina M, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol 2011;186:4234-4243.  https://doi.org/10.4049/jimmunol.1003668
  93. Boyle DL, Soma K, Hodge J, Kavanaugh A, Mandel D, Mease P, Shurmur R, Singhal AK, Wei N, Rosengren S, et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann Rheum Dis 2015;74:1311-1316. https://doi.org/10.1136/annrheumdis-2014-206028
  94. Dorritie KA, McCubrey JA, Johnson DE. STAT transcription factors in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 2014;28:248-257.  https://doi.org/10.1038/leu.2013.192
  95. Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nat Protoc 2007;2:1269-1275.  https://doi.org/10.1038/nprot.2007.173
  96. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, Lynn RC, Philip M, Rao A, Restifo NP, et al. Defining 'T cell exhaustion'. Nat Rev Immunol 2019;19:665-674.  https://doi.org/10.1038/s41577-019-0221-9
  97. Thommen DS, Schumacher TN. T cell dysfunction in cancer. Cancer Cell 2018;33:547-562.  https://doi.org/10.1016/j.ccell.2018.03.012
  98. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013;19:1252-1263.  https://doi.org/10.1038/nm.3361
  99. Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 2019;16:411-428. https://doi.org/10.1038/s41575-019-0145-7