DOI QR코드

DOI QR Code

COVID-19 Therapeutics: An Update on Effective Treatments Against Infection With SARS-CoV-2 Variants

  • Bill Thaddeus Padasas (Department of Pharmacy, Korea University College of Pharmacy) ;
  • Erica Espano (Department of Pharmacy, Korea University College of Pharmacy) ;
  • Sang-Hyun Kim (Department of Pharmacy, Korea University College of Pharmacy) ;
  • Youngcheon Song (Department of Pharmacy, Sahmyook University) ;
  • Chong-Kil Lee (Department of Pharmaceutics, College of Pharmacy, Chungbuk National University) ;
  • Jeong-Ki Kim (Department of Pharmacy, Korea University College of Pharmacy)
  • Received : 2022.12.21
  • Accepted : 2023.02.20
  • Published : 2023.04.30

Abstract

The coronavirus disease 2019 (COVID-19) pandemic is one of the most consequential global health crises in over a century. Since its discovery in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to mutate into different variants and sublineages, rendering previously potent treatments and vaccines ineffective. With significant strides in clinical and pharmaceutical research, different therapeutic strategies continue to be developed. The currently available treatments can be broadly classified based on their potential targets and molecular mechanisms. Antiviral agents function by disrupting different stages of SARS-CoV-2 infection, while immune-based treatments mainly act on the human inflammatory response responsible for disease severity. In this review, we discuss some of the current treatments for COVID-19, their mode of actions, and their efficacy against variants of concern. This review highlights the need to constantly evaluate COVID-19 treatment strategies to protect high risk populations and fill in the gaps left by vaccination.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1011553 and 2019R1A6A1A03031807), the National Institute of Health research project (project No. 2022ER170300), and the Korea University grant series (K2207131, L2204191 and K2225231). Figure illustration was adapted from "Coronavirus Replication Cycle", by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.

References

  1. World Health Organization. WHO coronavirus (COVID-19) dashboard [Internet]. Available at https://covid19.who.int [accessed on 22 November 2022].
  2. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020 [Internet]. Available at https://www.who.int/director-general/speeches/detail/whodirector-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 [accessed on 22 November 2022].
  3. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565-574.  https://doi.org/10.1016/S0140-6736(20)30251-8
  4. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020;9:221-236.  https://doi.org/10.1080/22221751.2020.1719902
  5. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol 2009;7:226-236.  https://doi.org/10.1038/nrmicro2090
  6. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631-637.  https://doi.org/10.1002/path.1570
  7. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450-454.  https://doi.org/10.1038/nature02145
  8. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022;23:3-20.  https://doi.org/10.1038/s41580-021-00418-x
  9. Abulsoud AI, El-Husseiny HM, El-Husseiny AA, El-Mahdy HA, Ismail A, Elkhawaga SY, Khidr EG, Fathi D, Mady EA, Najda A, et al. Mutations in SARS-CoV-2: insights on structure, variants, vaccines, and biomedical interventions. Biomed Pharmacother 2023;157:113977. 
  10. V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021;19:155-170.  https://doi.org/10.1038/s41579-020-00468-6
  11. Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res 2016;96:59-126.  https://doi.org/10.1016/bs.aivir.2016.08.008
  12. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003;300:1763-1767.  https://doi.org/10.1126/science.1085658
  13. Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 2020;18:275. 
  14. Chen J, Wang R, Wang M, Wei GW. Mutations strengthened SARS-CoV-2 infectivity. J Mol Biol 2020;432:5212-5226.  https://doi.org/10.1016/j.jmb.2020.07.009
  15. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, et al.; COVID-19 Genomics UK (COG-UK) Consortium SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 2021;19:409-424.  https://doi.org/10.1038/s41579-021-00573-0
  16. Kim S, Nguyen TT, Taitt AS, Jhun H, Park HY, Kim SH, Kim YG, Song EY, Lee Y, Yum H, et al. SARS-CoV-2 Omicron mutation is faster than the chase: multiple mutations on spike/ACE2 interaction residues. Immune Netw 2021;21:e38. 
  17. World Health Organization. Tracking SARS-CoV-2 variants [Internet]. Available at https://www.who.int/ activities/tracking-SARS-CoV-2-variants [accessed on 23 November 2022].
  18. Tegally H, Wilkinson E, Lessells RJ, Giandhari J, Pillay S, Msomi N, Mlisana K, Bhiman JN, von Gottberg A, Walaza S, et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat Med 2021;27:440-446.  https://doi.org/10.1038/s41591-021-01255-3
  19. Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, Hall MD. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020;6:672-683.  https://doi.org/10.1021/acscentsci.0c00489
  20. Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Gotte M. Remdesivir is a directacting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020;295:6785-6797.  https://doi.org/10.1074/jbc.RA120.013679
  21. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, Leist SR, Pyrc K, Feng JY, Trantcheva I, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017;9:eaal3653. 
  22. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269-271.  https://doi.org/10.1038/s41422-020-0282-0
  23. Pruijssers AJ, George AS, Schafer A, Leist SR, Gralinksi LE, Dinnon KH 3rd, Yount BL, Agostini ML, Stevens LJ, Chappell JD, et al. Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARSCoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Reports 2020;32:107940. 
  24. Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KP, Chu DK, Chan MC, Cheung PP, Huang X, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 2020;178:104786. 
  25. Williamson BN, Feldmann F, Schwarz B, Meade-White K, Porter DP, Schulz J, van Doremalen N, Leighton I, Yinda CK, Perez-Perez L, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARSCoV-2. Nature 2020;585:273-276.  https://doi.org/10.1038/s41586-020-2423-5
  26. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, Scott D, Cihlar T, Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A 2020;117:6771-6776.  https://doi.org/10.1073/pnas.1922083117
  27. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, et al. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med 2020;383:1813-1826.  https://doi.org/10.1056/NEJMoa2007764
  28. Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, Spinner CD, Galli M, Ahn MY, Nahass RG, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med 2020;383:1827-1837.  https://doi.org/10.1056/NEJMoa2015301
  29. Spinner CD, Gottlieb RL, Criner GJ, Arribas Lopez JR, Cattelan AM, Soriano Viladomiu A, Ogbuagu O, Malhotra P, Mullane KM, Castagna A, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA 2020;324:1048-1057.  https://doi.org/10.1001/jama.2020.16349
  30. Day RO, Williams KM. Open-label extension studies: do they provide meaningful information on the safety of new drugs? Drug Saf 2007;30:93-105.  https://doi.org/10.2165/00002018-200730020-00001
  31. WHO Solidarity Trial Consortium. Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet 2022;399:1941-1953.  https://doi.org/10.1016/S0140-6736(22)00519-0
  32. Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, Oguchi G, Ryan P, Nielsen BU, Brown M, et al. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med 2022;386:305-315.  https://doi.org/10.1056/NEJMoa2116846
  33. Solera JT, Arbol BG, Bahinskaya I, Marks N, Humar A, Kumar D. Short-course early outpatient remdesivir prevents severe disease due to COVID-19 in organ transplant recipients during the Omicron BA.2 wave. Am J Transplant 2023;23:78-83.  https://doi.org/10.1111/ajt.17199
  34. Takashita E, Yamayoshi S, Simon V, van Bakel H, Sordillo EM, Pekosz A, Fukushi S, Suzuki T, Maeda K, Halfmann P, et al. Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. N Engl J Med 2022;387:468-470. https://doi.org/10.1056/NEJMc2207519
  35. Imai M, Ito M, Kiso M, Yamayoshi S, Uraki R, Fukushi S, Watanabe S, Suzuki T, Maeda K, Sakai-Tagawa Y, et al. Efficacy of antiviral agents against omicron subvariants BQ.1.1 and XBB. N Engl J Med 2023;388:89-91.  https://doi.org/10.1056/NEJMc2214302
  36. United States Food and Drug Administration. FDA's approval of Veklury (remdesivir) for the treatment of COVID-19-the science of safety and effectiveness [Internet]. Available at https://www.fda.gov/drugs/ news-events-human-drugs/fdas-approval-veklury-remdesivir-treatment-covid-19-science-safety-andeffectiveness [accessed on 14 November 2022].
  37. European Medicines Agency. Veklury [Internet]. Available at https://www.ema.europa.eu/en/medicines/ human/EPAR/veklury [accessed on 14 November 2022].
  38. Huang P. Why remdesivir, a highly effective COVID treatment, is a last resort for providers. NPR. 7 February 2022; Sect. Shots - Health News.
  39. Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res 2020;220:33-42.  https://doi.org/10.1016/j.trsl.2020.01.005
  40. Painter GR, Bowen RA, Bluemling GR, DeBergh J, Edpuganti V, Gruddanti PR, Guthrie DB, Hager M, Kuiper DL, Lockwood MA, et al. The prophylactic and therapeutic activity of a broadly active ribonucleoside analog in a murine model of intranasal venezuelan equine encephalitis virus infection. Antiviral Res 2019;171:104597. 
  41. Yoon JJ, Toots M, Lee S, Lee ME, Ludeke B, Luczo JM, Ganti K, Cox RM, Sticher ZM, Edpuganti V, et al. Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrob Agents Chemother 2018;62:e00766-18. 
  42. Gordon CJ, Tchesnokov EP, Schinazi RF, Gotte M. Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. J Biol Chem 2021;297:100770. 
  43. Toots M, Yoon JJ, Cox RM, Hart M, Sticher ZM, Makhsous N, Plesker R, Barrena AH, Reddy PG, Mitchell DG, et al. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci Transl Med 2019;11:eaax5866. 
  44. Agostini ML, Pruijssers AJ, Chappell JD, Gribble J, Lu X, Andres EL, Bluemling GR, Lockwood MA, Sheahan TP, Sims AC, et al. Small-molecule antiviral β-d-N4-hydroxycytidine inhibits a proofreadingintact coronavirus with a high genetic barrier to resistance. J Virol 2019;93:e01348-19. 
  45. Barnard DL, Hubbard VD, Burton J, Smee DF, Morrey JD, Otto MJ, Sidwell RW. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and β-D-N4- hydroxycytidine. Antivir Chem Chemother 2004;15:15-22.  https://doi.org/10.1177/095632020401500102
  46. Ehteshami M, Tao S, Zandi K, Hsiao HM, Jiang Y, Hammond E, Amblard F, Russell OO, Merits A, Schinazi RF. Characterization of β-d-N4-hydroxycytidine as a novel inhibitor of chikungunya virus. Antimicrob Agents Chemother 2017;61:e02395-16. 
  47. Reynard O, Nguyen XN, Alazard-Dany N, Barateau V, Cimarelli A, Volchkov VE. Identification of a new ribonucleoside inhibitor of Ebola virus replication. Viruses 2015;7:6233-6240.  https://doi.org/10.3390/v7122934
  48. Stuyver LJ, Whitaker T, McBrayer TR, Hernandez-Santiago BI, Lostia S, Tharnish PM, Ramesh M, Chu CK, Jordan R, Shi J, et al. Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture. Antimicrob Agents Chemother 2003;47:244-254.  https://doi.org/10.1128/AAC.47.1.244-254.2003
  49. Urakova N, Kuznetsova V, Crossman DK, Sokratian A, Guthrie DB, Kolykhalov AA, Lockwood MA, Natchus MG, Crowley MR, Painter GR, et al. β-d-N4-hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome. J Virol 2018;92:e01965-17. 
  50. Zhao J, Guo S, Yi D, Li Q, Ma L, Zhang Y, Wang J, Li X, Guo F, Lin R, et al. A cell-based assay to discover inhibitors of SARS-CoV-2 RNA dependent RNA polymerase. Antiviral Res 2021;190:105078. 
  51. Cox RM, Wolf JD, Plemper RK. Therapeutically administered ribonucleoside analogue MK-4482/EIDD2801 blocks SARS-CoV-2 transmission in ferrets. Nat Microbiol 2021;6:11-18.  https://doi.org/10.1038/s41564-020-00835-2
  52. Abdelnabi R, Foo CS, De Jonghe S, Maes P, Weynand B, Neyts J. Molnupiravir inhibits replication of the emerging SARS-CoV-2 variants of concern in a hamster infection model. J Infect Dis 2021;224:749-753. https://doi.org/10.1093/infdis/jiab361
  53. Painter WP, Holman W, Bush JA, Almazedi F, Malik H, Eraut NC, Morin MJ, Szewczyk LJ, Painter GR. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrob Agents Chemother 2021;65:e02428-20. 
  54. Fischer WA 2nd, Eron JJ Jr, Holman W, Cohen MS, Fang L, Szewczyk LJ, Sheahan TP, Baric R, Mollan KR, Wolfe CR, et al. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci Transl Med 2022;14:eabl7430. 
  55. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, MartinQuiros A, Caraco Y, Williams-Diaz A, Brown ML, et al. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med 2022;386:509-520.  https://doi.org/10.1056/NEJMoa2116044
  56. European Medicines Agency. EMA issues advice on use of Lagevrio (molnupiravir) for the treatment COVID-19 [Internet]. Available at https://www.ema.europa.eu/en/news/ema-issues-advice-use-lagevriomolnupiravir-treatment-covid-19 [accessed on 26 October 2022].
  57. World Health Organization. WHO updates its treatment guidelines to include molnupiravir [Internet]. Available at https://www.who.int/news/item/03-03-2022-molnupiravir [accessed on 26 October 2022].
  58. United States Food and Drug Administration. Coronavirus (COVID-19) update: FDA authorizes additional oral antiviral for treatment of COVID-19 in certain adults [Internet]. Available at https://www.fda.gov/ news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-oral-antiviraltreatment-covid-19-certain [accessed on 29 November 2022].
  59. Wong CK, Au IC, Lau KT, Lau EH, Cowling BJ, Leung GM. Real-world effectiveness of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and in-hospital outcomes among community-dwelling, ambulatory patients with confirmed SARS-CoV-2 infection during the omicron wave in Hong Kong: an observational study. Lancet 2022;400:1213-1222.  https://doi.org/10.1016/S0140-6736(22)01586-0
  60. Hoffman RL, Kania RS, Brothers MA, Davies JF, Ferre RA, Gajiwala KS, He M, Hogan RJ, Kozminski K, Li LY, et al. Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. J Med Chem 2020;63:12725-12747.  https://doi.org/10.1021/acs.jmedchem.0c01063
  61. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020;582:289-293.  https://doi.org/10.1038/s41586-020-2223-y
  62. Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 2020;30:127377. 
  63. Boras B, Jones RM, Anson BJ, Arenson D, Aschenbrenner L, Bakowski MA, Beutler N, Binder J, Chen E, Eng H, et al. Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19. Nat Commun 2021;12:6055. 
  64. Owen DR, Allerton CM, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ, et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021;374:1586-1593.  https://doi.org/10.1126/science.abl4784
  65. Lamb YN. Nirmatrelvir plus ritonavir: first approval. Drugs 2022;82:585-591.  https://doi.org/10.1007/s40265-022-01692-5
  66. Reis S, Metzendorf MI, Kuehn R, Popp M, Gagyor I, Kranke P, Meybohm P, Skoetz N, Weibel S. Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. Cochrane Database Syst Rev 2022;9:CD015395. 
  67. Pfizer. Pfizer's novel COVID-19 oral antiviral treatment candidate reduced risk of hospitalization or death by 89% in interim analysis of phase 2/3 EPIC-HR study [Internet]. Available at https://www.pfizer. com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate [accessed on 19 November 2022].
  68. Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, Baniecki M, Hendrick VM, Damle B, Simon-Campos A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med 2022;386:1397-1408.  https://doi.org/10.1056/NEJMoa2118542
  69. Gentile I, Scotto R, Schiano Moriello N, Pinchera B, Villari R, Trucillo E, Ametrano L, Fusco L, Castaldo G, Buonomo AR, et al. Nirmatrelvir/ritonavir and molnupiravir in the treatment of mild/moderate COVID-19: results of a real-life study. Vaccines (Basel) 2022;10:1731.
  70. Xie Y, Choi T, Al-Aly Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19. Preprint at https:// www.medrxiv.org/content/10.1101/2022.11.03.22281783v1 (2022). 
  71. Cao Z, Gao W, Bao H, Feng H, Mei S, Chen P, Gao Y, Cui Z, Zhang Q, Meng X, et al. VV116 versus nirmatrelvir-ritonavir for oral treatment of Covid-19. N Engl J Med 2023;388:406-417.  https://doi.org/10.1056/NEJMoa2208822
  72. European Medicines Agency. Paxlovid [Internet]. Available at https://www.ema.europa.eu/en/medicines/ human/EPAR/paxlovid [accessed on 15 November 2022].
  73. Medicines & Healthcare products Regulatory Agency. COVID-19 antiviral, Paxlovid, approved by UK regulator [Internet]. Available at https://www.gov.uk/government/news/oral-covid-19-antiviral-paxlovidapproved-by-uk-regulator [accessed on 19 November 2022].
  74. Pfizer. Pfizer receives health canada authorization for COVID-19 oral treatment [Internet]. Available at https://www.pfizer.ca/Health_Canada_Approves_PAXLOVID [accessed on 19 November 2022].
  75. Therapeutic Goods Administration. TGA provisionally approves two oral COVID-19 treatments, molnupiravir (LAGEVRIO) and nirmatrelvir + ritonavir (PAXLOVID) [Internet]. Available at https://www. tga.gov.au/news/media-releases/tga-provisionally-approves-two-oral-covid-19-treatments-molnupiravirlagevrio-and-nirmatrelvir-ritonavir-paxlovid [accessed on 19 November 2022].
  76. Pfizer. PAXLOVIDTM [Internet]. Available at https://www.pfizer.com/products/product-detail/paxlovidtm [accessed on 20 November 2022].
  77. Keating GM, Vaidya A. Sofosbuvir: first global approval. Drugs 2014;74:273-282.  https://doi.org/10.1007/s40265-014-0179-7
  78. Xu HT, Colby-Germinario SP, Hassounah SA, Fogarty C, Osman N, Palanisamy N, Han Y, Oliveira M, Quan Y, Wainberg MA. Evaluation of sofosbuvir (β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methyluridine) as an inhibitor of Dengue virus replication. Sci Rep 2017;7:6345. 
  79. Bullard-Feibelman KM, Govero J, Zhu Z, Salazar V, Veselinovic M, Diamond MS, Geiss BJ. The FDAapproved drug sofosbuvir inhibits Zika virus infection. Antiviral Res 2017;137:134-140.  https://doi.org/10.1016/j.antiviral.2016.11.023
  80. Ferreira AC, Reis PA, de Freitas CS, Sacramento CQ, Villas Boas Hoelz L, Bastos MM, Mattos M, Rocha N, Gomes de Azevedo Quintanilha I, da Silva Gouveia Pedrosa C, et al. Beyond members of the Flaviviridae family, sofosbuvir also inhibits chikungunya virus replication. Antimicrob Agents Chemother 2019;63:e01389-18. 
  81. Ju J, Li X, Kumar S, Jockusch S, Chien M, Tao C, Morozova I, Kalachikov S, Kirchdoerfer RN, Russo JJ. Nucleotide analogues as inhibitors of SARS-CoV polymerase. Pharmacol Res Perspect 2020;8:e00674. 
  82. Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J Biomol Struct Dyn 2021;39:3204-3212.  https://doi.org/10.1080/07391102.2020.1761882
  83. Jockusch S, Tao C, Li X, Chien M, Kumar S, Morozova I, Kalachikov S, Russo JJ, Ju J. Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by Remdesivir. Sci Rep 2020;10:16577. 
  84. Messina V, Nevola R, Izzi A, De Lucia Sposito P, Marrone A, Rega R, Fusco R, Lumino P, Rinaldi L, Gaglione P, et al. Efficacy and safety of the sofosbuvir/velpatasvir combination for the treatment of patients with early mild to moderate COVID-19. Sci Rep 2022;12:5771. 
  85. Sayad B, Khodarahmi R, Najafi F, Miladi R, Mohseni Afshar Z, Mansouri F, Rahimi Z, Shirvani M, Salimi M, Vaziri S, et al. Efficacy and safety of sofosbuvir/velpatasvir versus the standard of care in adults hospitalized with COVID-19: a single-centre, randomized controlled trial. J Antimicrob Chemother 2021;76:2158-2167.  https://doi.org/10.1093/jac/dkab152
  86. Roozbeh F, Saeedi M, Alizadeh-Navaei R, Hedayatizadeh-Omran A, Merat S, Wentzel H, Levi J, Hill A, Shamshirian A. Sofosbuvir and daclatasvir for the treatment of COVID-19 outpatients: a double-blind, randomized controlled trial. J Antimicrob Chemother 2021;76: 753-757.  https://doi.org/10.1093/jac/dkaa501
  87. Espano E, Kim D, Kim J, Park SK, Kim JK. COVID-19 antiviral and treatment candidates: current status. Immune Netw 2021;21:e7.
  88. Sokhela S, Bosch B, Hill A, Simmons B, Woods J, Johnstone H, Akpomiemie G, Ellis L, Owen A, Casas CP, et al. Randomized clinical trial of nitazoxanide or sofosbuvir/daclatasvir for the prevention of SARS-CoV-2 infection. J Antimicrob Chemother 2022;77:2706-2712.  https://doi.org/10.1093/jac/dkac266
  89. Tobback E, Degroote S, Buysse S, Delesie L, Van Dooren L, Vanherrewege S, Barbezange C, Hutse V, Romano M, Thomas I, et al. Efficacy and safety of camostat mesylate in early COVID-19 disease in an ambulatory setting: a randomized placebo-controlled phase II trial. Int J Infect Dis 2022;122:628-635.  https://doi.org/10.1016/j.ijid.2022.06.054
  90. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-280.e8.  https://doi.org/10.1016/j.cell.2020.02.052
  91. Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr, Nunneley JW, Barnard D, Pohlmann S, McKerrow JH, Renslo AR, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res 2015;116:76-84.  https://doi.org/10.1016/j.antiviral.2015.01.011
  92. Sakr Y, Bensasi H, Taha A, Bauer M, Ismail K; the UAE-Jena Research Group. Camostat mesylate therapy in critically ill patients with COVID-19 pneumonia. Intensive Care Med 2021;47:707-709.  https://doi.org/10.1007/s00134-021-06395-1
  93. Gunst JD, Staerke NB, Pahus MH, Kristensen LH, Bodilsen J, Lohse N, Dalgaard LS, Bronnum D, Frobert O, Honge B, et al. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid-19-a double-blind randomized controlled trial. EClinicalMedicine 2021;35:100849. 
  94. Chupp G, Spichler-Moffarah A, Sogaard OS, Esserman D, Dziura J, Danzig L, Chaurasia R, Patra KP, Salovey A, Nunez A, et al. A phase 2 randomized, double-blind, placebo-controlled trial of oral camostat mesylate for early treatment of COVID-19 outpatients showed shorter illness course and attenuation of loss of smell and taste. Preprint at https://www.medrxiv.org/content/10.1101/2022.01.28.22270035v1 (2022). 
  95. Yamamoto M, Kiso M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Takeda M, Kinoshita N, Ohmagari N, Gohda J, Semba K, et al. The anticoagulant nafamostat potently inhibits SARS-CoV-2 S proteinmediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 2020;12:629. 
  96. Hoffmann M, Schroeder S, Kleine-Weber H, Muller MA, Drosten C, Pohlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother 2020;64:e00754-20. 
  97. Quinn TM, Gaughan EE, Bruce A, Antonelli J, O'Connor R, Li F, McNamara S, Koch O, MacKintosh C, Dockrell D, et al. Randomised controlled trial of intravenous nafamostat mesylate in COVID pneumonitis: Phase 1b/2a experimental study to investigate safety, Pharmacokinetics and Pharmacodynamics. EBioMedicine 2022;76:103856. 
  98. Zhuravel SV, Khmelnitskiy OK, Burlaka OO, Gritsan AI, Goloshchekin BM, Kim S, Hong KY. Nafamostat in hospitalized patients with moderate to severe COVID-19 pneumonia: a randomised Phase II clinical trial. EClinicalMedicine 2021;41:101169. 
  99. Westendorf K, Zentelis S, Wang L, Foster D, Vaillancourt P, Wiggin M, Lovett E, van der Lee R, Hendle J, Pustilnik A, et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Preprint at https://www.biorxiv.org/content/10.1101/2021.04.30.442182v6 (2022). 
  100. Dougan M, Azizad M, Chen P, Feldman B, Frieman M, Igbinadolor A, Kumar P, Morris J, Potts J, Baracco L, et al. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as a broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19. Preprint at https://www. medrxiv.org/content/10.1101/2022.03.10.22272100v1 (2022). 
  101. United States Food and Drug Administration. Coronavirus (COVID-19) update: FDA authorizes new monoclonal antibody for treatment of COVID-19 that retains activity against omicron variant [Internet]. Available at https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fdaauthorizes-new-monoclonal-antibody-treatment-covid-19-retains [accessed on 24 November 2022].
  102. Dryden-Peterson S, Kim A, Joyce MR, Johnson JA, Kim AY, Baden LR, Woolley AE. Bebtelovimab for highrisk outpatients with early COVID-19 in a large US health system. Open Forum Infect Dis 2022;9:ofac565.
  103. United States Food and Drug Administration. FDA updates on bebtelovimab [Internet]. Available at https://www.fda.gov/drugs/drug-safety-and-availability/fda-updatesbebtelovimab#:~:text=%5BNovember%2030%2C%202022%5D%20FDA,read%20the%20CDER%20 Statement%20here [accessed on 24 November 2022].
  104. United States Food and Drug Administration. Announces bebtelovimab is not currently authorized in any US region [Internet]. Available at https://www.fda.gov/drugs/drug-safety-and-availability/fda-announcesbebtelovimab-not-currently-authorized-any-us-region [accessed on 31 January 2023].
  105. Levin MJ, Ustianowski A, De Wit S, Launay O, Avila M, Templeton A, Yuan Y, Seegobin S, Ellery A, Levinson DJ, et al. Intramuscular AZD7442 (tixagevimab-cilgavimab) for prevention of Covid-19. N Engl J Med 2022;386:2188-2200.  https://doi.org/10.1056/NEJMoa2116620
  106. Loo YM, McTamney PM, Arends RH, Abram ME, Aksyuk AA, Diallo S, Flores DJ, Kelly EJ, Ren K, Roque R, et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci Transl Med 2022;14:eabl8124. 
  107. Dong J, Zost SJ, Greaney AJ, Starr TN, Dingens AS, Chen EC, Chen RE, Case JB, Sutton RE, Gilchuk P, et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat Microbiol 2021;6:1233-1244.  https://doi.org/10.1038/s41564-021-00972-2
  108. Astrazeneca. AZD7442 PROVENT phase III prophylaxis trial met primary endpoint in preventing COVID-19 [Internet]. Available at https://www.astrazeneca.com/media-centre/press-releases/2021/ azd7442-prophylaxis-trial-met-primary-endpoint.html [accessed on 25 November 2022].
  109. United States Food and Drug Administration. FDA releases important information about risk of COVID-19 due to certain variants not neutralized by evusheld [Internet]. Available at https://www.fda.gov/ drugs/drug-safety-and-availability/fda-announces-evusheld-not-currently-authorized-emergency-use-us [accessed on 25 November 2022].
  110. VanBlargan LA, Errico JM, Halfmann PJ, Zost SJ, Crowe JE Jr, Purcell LA, Kawaoka Y, Corti D, Fremont DH, Diamond MS. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med 2022;28:490-495.  https://doi.org/10.1038/s41591-021-01678-y
  111. United States Food and Drug Administration. FDA announces Evusheld is not currently authorized for emergency use in the U.S. [Internet]. Available at https://www.fda.gov/drugs/drug-safety-and-availability/ fda-announces-evusheld-not-currently-authorized-emergency-use-us [accessed on 8 February 2023].
  112. Hurt AC, Wheatley AK. Neutralizing antibody therapeutics for COVID-19. Viruses 2021;13:628. 
  113. Nathan R, Shawa I, De La Torre I, Pustizzi JM, Haustrup N, Patel DR, Huhn G. A narrative review of the clinical practicalities of bamlanivimab and etesevimab antibody therapies for SARS-CoV-2. Infect Dis Ther 2021;10:1933-1947.  https://doi.org/10.1007/s40121-021-00515-6
  114. Dougan M, Nirula A, Azizad M, Mocherla B, Gottlieb RL, Chen P, Hebert C, Perry R, Boscia J, Heller B, et al. Bamlanivimab plus etesevimab in mild or moderate Covid-19. N Engl J Med 2021;385:1382-1392.  https://doi.org/10.1056/NEJMoa2102685
  115. Deeks ED. Casirivimab/imdevimab: first approval. Drugs 2021;81:2047-2055.  https://doi.org/10.1007/s40265-021-01620-z
  116. Razonable RR, Pawlowski C, O'Horo JC, Arndt LL, Arndt R, Bierle DM, Borgen MD, Hanson SN, Hedin MC, Lenehan P, et al. Casirivimab-Imdevimab treatment is associated with reduced rates of hospitalization among high-risk patients with mild to moderate coronavirus disease-19. EClinicalMedicine 2021;40:101102. 
  117. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Musser BJ, Soo Y, Rofail D, Im J, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med 2021;384:238-251.  https://doi.org/10.1056/NEJMoa2035002
  118. RECOVERY Collaborative Group. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2022;399:665-676.  https://doi.org/10.1016/S0140-6736(22)00163-5
  119. United States Food and Drug Administration. Coronavirus (COVID-19) update: FDA limits use of certain monoclonal antibodies to treat COVID-19 due to the Omicron variant [Internet]. Available at https:// www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certainmonoclonal-antibodies-treat-covid-19-due-omicron [accessed on 29 November 2022].
  120. Kim C, Ryu DK, Lee J, Kim YI, Seo JM, Kim YG, Jeong JH, Kim M, Kim JI, Kim P, et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun 2021;12:288. 
  121. Kim JY, Sandulescu O, Preotescu LL, Rivera-Martinez NE, Dobryanska M, Birlutiu V, Miftode EG, Gaibu N, Caliman-Sturdza O, Florescu SA, et al. A randomized clinical trial of regdanvimab in high-risk patients with mild-to-moderate coronavirus disease 2019. Open Forum Infect Dis 2022;9:ofac406. 
  122. European Medicines Agency. Regkirona [Internet]. Available at https://www.ema.europa.eu/en/ medicines/human/EPAR/regkirona [accessed on 21 December 2022].
  123. Li M, Lou F, Fan H. SARS-CoV-2 variant Omicron: currently the most complete "escapee" from neutralization by antibodies and vaccines. Signal Transduct Target Ther 2022;7:28. 
  124. Heo YA. Sotrovimab: First Approval. Drugs 2022;82:477-484.  https://doi.org/10.1007/s40265-022-01690-7
  125. Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR, Sarkis E, Solis J, Zheng H, Scott N, et al. Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med 2021;385:1941-1950.  https://doi.org/10.1056/NEJMoa2107934
  126. United States Food and Drug Administration. FDA updates sotrovimab emergency use authorization [Internet]. Available at https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-sotrovimabemergency-use-authorization#:~:text=%5B2%2F25%2F2022%5D,not%20susceptible%20to%20this%20 treatment [accessed on 25 November 2022].
  127. Fu B, Xu X, Wei H. Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med 2020;18:164. 
  128. Rubin EJ, Longo DL, Baden LR. Interleukin-6 receptor inhibition in Covid-19 - cooling the inflammatory soup. N Engl J Med 2021;384:1564-1565.  https://doi.org/10.1056/NEJMe2103108
  129. Kang YW, Park S, Lee KJ, Moon D, Kim YM, Lee SW. Understanding the host innate immune responses against SARS-CoV-2 infection and COVID-19 pathogenesis. Immune Netw 2021;21:e1. 
  130. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017;39:529-539.  https://doi.org/10.1007/s00281-017-0629-x
  131. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 2020;368:473-474.  https://doi.org/10.1126/science.abb8925
  132. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020;130:2620-2629.  https://doi.org/10.1172/JCI137244
  133. REMAP-CAP Investigators, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, Annane D, Beane A, van Bentum-Puijk W, et al. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N Engl J Med 2021;384:1491-1502.  https://doi.org/10.1056/NEJMoa2100433
  134. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2021;397:1637-1645.  https://doi.org/10.1016/S0140-6736(21)00676-0
  135. Rosas IO, Diaz G, Gottlieb RL, Lobo SM, Robinson P, Hunter BD, Cavalcante AW, Overcash JS, Hanania NA, Skarbnik A, et al. Tocilizumab and remdesivir in hospitalized patients with severe COVID-19 pneumonia: a randomized clinical trial. Intensive Care Med 2021;47:1258-1270.  https://doi.org/10.1007/s00134-021-06507-x
  136. United States Food and Drug Administration. FDA roundup: December 23, 2022 [Internet]. Available at https://www.fda.gov/news-events/press-announcements/fda-roundup-december-23-2022 [accessed on 31 January 2023].
  137. Sonmez HE, Demir S, Bilginer Y, Ozen S. Anakinra treatment in macrophage activation syndrome: a single center experience and systemic review of literature. Clin Rheumatol 2018;37:3329-3335.  https://doi.org/10.1007/s10067-018-4095-1
  138. Monteagudo LA, Boothby A, Gertner E. Continuous intravenous anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol 2020;2:276-282. https://doi.org/10.1002/acr2.11135
  139. Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, Oltolini C, Castiglioni B, Tassan Din C, Boffini N, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol 2020;2:e325-e331.  https://doi.org/10.1016/S2665-9913(20)30127-2
  140. Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I, Sacco E, Naccache JM, Bezie Y, Laplanche S, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol 2020;2:e393-e400.  https://doi.org/10.1016/S2665-9913(20)30164-8
  141. Kyriazopoulou E, Poulakou G, Milionis H, Metallidis S, Adamis G, Tsiakos K, Fragkou A, Rapti A, Damoulari C, Fantoni M, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med 2021;27:1752-1760.  https://doi.org/10.1038/s41591-021-01499-z
  142. Sobi. Emergency use authorization Kineret [Internet]. Available at https://www.kineretrx.com/covid19- update [accessed on 3 February 2023].
  143. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis 2020;20:400-402.  https://doi.org/10.1016/S1473-3099(20)30132-8
  144. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Rawling M, Savory E, Stebbing J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020;395:e30-e31.  https://doi.org/10.1016/S0140-6736(20)30304-4
  145. Stebbing J, Krishnan V, de Bono S, Ottaviani S, Casalini G, Richardson PJ, Monteil V, Lauschke VM, Mirazimi A, Youhanna S, et al. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol Med 2020;12:e12697. 
  146. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-1062.  https://doi.org/10.1016/S0140-6736(20)30566-3
  147. Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC, Lei HY. An interferon-γ-related cytokine storm in SARS patients. J Med Virol 2005;75:185-194.  https://doi.org/10.1002/jmv.20255
  148. Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, Marconi VC, Ruiz-Palacios GM, Hsieh L, Kline S, et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N Engl J Med 2021;384:795-807.  https://doi.org/10.1056/NEJMoa2031994
  149. Eli Lilly and Company. FDA approves Lilly and Incyte's OLUMIANT® (baricitinib) for the treatment of certain hospitalized patients with COVID-19 Eli Lilly and Company [Internet]. Available at https:// investor.lilly.com/news-releases/news-release-details/fda-approves-lilly-and-incytes-olumiantrbaricitinib-treatment [accessed on 25 November 2022].
  150. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019- nCoV lung injury. Lancet 2020;395:473-475.  https://doi.org/10.1016/S0140-6736(20)30317-2
  151. Nhean S, Varela ME, Nguyen YN, Juarez A, Huynh T, Udeh D, Tseng AL. COVID-19: a review of potential treatments (corticosteroids, remdesivir, tocilizumab, bamlanivimab/etesevimab, and casirivimab/ imdevimab) and pharmacological considerations. J Pharm Pract 2021. doi: 10.1177/08971900211048139. 
  152. Hafkamp FM, Mol S, Waque I, De Jong EC. Dexamethasone, but not vitamin D or A, dampens the inflammatory neutrophil response to protect at-risk COVID-19 patients. Immune Netw 2022;22:e36. 
  153. Dexamethasone in hospitalized patients with Covid-19 - preliminary report. N Engl J Med 2020;384:693-704.  https://doi.org/10.1056/NEJMoa2021436
  154. European Medicines Agency. EMA endorses use of dexamethasone in COVID-19 patients on oxygen or mechanical ventilation [Internet]. Available at https://www.ema.europa.eu/en/news/ema-endorses-usedexamethasone-covid-19-patients-oxygen-mechanical-ventilation [accessed on 18 December 2022].
  155. National Institutes of Health. Corticosteroids [Internet]. https://www.covid19treatmentguidelines.nih. gov/therapies/immunomodulators/corticosteroids/ [accessed on 14 December 2022].