DOI QR코드

DOI QR Code

Improvement of Lutein and Zeaxanthin Production in Mychonastes sp. 247 by Optimizing Light Intensity and Culture Salinity Conditions

  • Seong-Joo Hong (Department of Biological Engineering, Inha University) ;
  • Kyung June Yim (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Young-Jin Ryu (Department of Biological Engineering, Inha University) ;
  • Choul-Gyun Lee (Department of Biological Engineering, Inha University) ;
  • Hyun-Jin Jang (Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ji Young Jung (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Z-Hun Kim (Microbial Research Department, Nakdonggang National Institute of Biological Resources)
  • Received : 2022.11.04
  • Accepted : 2022.11.23
  • Published : 2023.02.28

Abstract

In this study, we sought to improve lutein and zeaxanthin production in Mychonastes sp. 247 and investigated the effect of environmental factors on lutein and zeaxanthin productivity in Mychonastes sp. The basic medium selection and N:P ratio were adjusted to maximize cell growth in one-stage culture, and lutein and zeaxanthin production conditions were optimized using a central composite design for two-stage culture. The maximum lutein production was observed at a light intensity of 60 μE/m2/s and salinity of 0.49%, and the maximum zeaxanthin production was observed at a light intensity of 532 μE/m2/s and salinity of 0.78%. Lutein and zeaxanthin production in the optimized medium increased by up to 2 and 2.6 folds, respectively, compared to that in the basic medium. Based on these results, we concluded that the optimal conditions for lutein and zeaxanthin production are different and that optimization of light intensity and culture salinity conditions may help increase carotenoid production. This study presents a useful and potential strategy for optimizing microalgal culture conditions to improve the productivity of lutein and zeaxanthin, which has applications in the functional food field.

Keywords

Acknowledgement

This study was supported by a grant (Project No. NNIBR202303101) from the Nakdonggang National Institute of Biological Resources funded by the Ministry of Environment of the Korean government. This work was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2022R1I1A1A01052953).

References

  1. Varela JC, Pereira H, Vila M, Leon R. 2015. Production of carotenoids by microalgae: achievements and challenges. Photosynth. Res. 125: 423-436. https://doi.org/10.1007/s11120-015-0149-2
  2. Li Z, Wakao S, Fischer BB, Niyogi KK. 2009. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60: 239-260. https://doi.org/10.1146/annurev.arplant.58.032806.103844
  3. Ye ZW, Jiang JG, Wu GH. 2008. Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol. Adv. 26: 352-360. https://doi.org/10.1016/j.biotechadv.2008.03.004
  4. Grossman AR, Lohr M, Im CS. 2004. Chlamydomonas reinhardtii in the landscape of pigments. Ann. Rev. Genet. 38: 119.
  5. Dufosse L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, et al. 2005. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci. Technol. 16: 389-406. https://doi.org/10.1016/j.tifs.2005.02.006
  6. Coleman HR, Chew EY. 2007. Nutritional supplementation in age-related macular degeneration. Medical Retina. pp. 105-111.
  7. Richer S, Devenport J, Lang JC. 2007. LAST II: differential temporal responses of macular pigment optical density in patients with atrophic age-related macular degeneration to dietary supplementation with xanthophylls. Optometry 78: 213-219. https://doi.org/10.1016/j.optm.2006.10.019
  8. Granado-Lorencio F, Herrero-Barbudo C, Acien-Fernandez G, Molina-Grima E, Fernandez-Sevilla JM, Perez-Sacristan B, et al. 2009. In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chem. 114: 747-752. https://doi.org/10.1016/j.foodchem.2008.10.058
  9. Gong M, Bassi A. 2016. Carotenoids from microalgae: a review of recent developments. Biotechnol. Adv. 34: 1396-1412. https://doi.org/10.1016/j.biotechadv.2016.10.005
  10. Di Caprio F, Visca A, Altimari P, Toro L, Masciocchi B, Iaquaniello G, et al. 2016. Two stage process of microalgae cultivation for starch and carotenoid production. Chem. Eng. Trans. 49: 415-420.
  11. Kato Y, Hasunuma T. 2021. Metabolic engineering for carotenoid production using eukaryotic microalgae and prokaryotic cyanobacteria, pp. 121-135. In Misawa N (ed.), Carotenoids: Biosynthetic and Biofunctional Approaches, Ed. Springer Singapore, Singapore
  12. Ren Y, Sun H, Deng J, Huang J, Chen F. 2021. Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Mar. Drugs 19: 713.
  13. Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H. 2018. Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnol. Biofuels 11: 272.
  14. Bhosale P. 2004. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol. 63: 351-361. https://doi.org/10.1007/s00253-003-1441-1
  15. Cordero BF, Obraztsova I, Martin L, Couso I, Leon R, Angeles Vargas M, et al. 2010. Isolation and characterization of a lycopene β-cyclase gene from the astaxanthin-producing green alga Chlorella zofingiensis (chlorophyta). J. Phycol. 46: 1229-1238. https://doi.org/10.1111/j.1529-8817.2010.00907.x
  16. Fu W, Paglia G, Magnusdottir M, Steinarsdottir EA, Gudmundsson S, Palsson BO, et al. 2014. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb. Cell. Fact. 13: 1-9. https://doi.org/10.1186/1475-2859-13-1
  17. Shi XM, Zhang XW, Chen F. 2000. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Technol. 27: 312-318. https://doi.org/10.1016/S0141-0229(00)00208-8
  18. Harker M, Tsavalos AJ, Young AJ. 1996. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour. Technol. 55: 207-214. https://doi.org/10.1016/0960-8524(95)00002-X
  19. Orosa M, Torres E, Fidalgo P, Abalde J. 2000. Production and analysis of secondary carotenoids in green algae. J. Appl. Phycol. 12: 553-556. https://doi.org/10.1023/A:1008173807143
  20. Ma R, Zhao X, Xie Y, Ho SH, Chen J. 2019. Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresour. Technol. 275: 416-420. https://doi.org/10.1016/j.biortech.2018.12.109
  21. Yokoi S, Bressan RA, Hasegawa PM. 2002. Salt stress tolerance of plants. JIRCAS Working Rep. pp. 25-33.
  22. Fan Y, Yuan C, Jin Y, Hu GR, Li FL. 2018. Characterization of 3-ketoacyl-coA synthase in a nervonic acid producing oleaginous microalgae Mychonastes afer. Algal Res. 31: 225-231. https://doi.org/10.1016/j.algal.2018.02.017
  23. Yuan C, Liu JH, Fan Y, Ren XH, Hu GR, Li FL. 2011. Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol. Biofuels 4: 47.
  24. Yuan C, Xu K, Sun J, Hu GR, Li FL. 2018. Ammonium, nitrate, and urea play different roles for lipid accumulation in the nervonic acid-producing microalgae Mychonastes afer HSO-3-1. J. Appl. Phycol. 30: 793-801. https://doi.org/10.1007/s10811-017-1308-y
  25. Jang HJ, Yim KJ, Jo BY, Nam SW, Nam YH, Hwang BS, et al. 2021. Antioxidant and anticancer activities of methanolic extracts from indigenous freshwater green microalgae. KSBB J. 36: 154-164. https://doi.org/10.7841/ksbbj.2021.36.2.154
  26. Sarrafzadeh MH, La HJ, Seo SH, Asgharnejad H, Oh HM. 2015. Evaluation of various techniques for microalgal biomass quantification. J. Biotechnol. 216: 90-97. https://doi.org/10.1016/j.jbiotec.2015.10.010
  27. Agrawal S, Sarma Y. 1982. Effects of nutrients present in Bold's basal medium on the green alga Stigeoclonium pascheri. Folia Microbiol. 27: 131-137. https://doi.org/10.1007/BF02879772
  28. Rattanapoltee P, Kaewkannetra P. 2014. Cultivation of microalga, Chlorella vulgaris under different auto-hetero-mixo trophic growths as a raw material during biodiesel production and cost evaluation. Energy 78: 4-8. https://doi.org/10.1016/j.energy.2014.06.049
  29. Sangapillai K, Marimuthu T. 2019. Isolation and selection of growth medium for freshwater microalgae Asterarcys quadricellulare for maximum biomass production. Water Sci. Technol. 80: 2027-2036. https://doi.org/10.2166/wst.2020.015
  30. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111: 1-61. https://doi.org/10.1099/00221287-111-1-1
  31. Yao R, Fu W, Du M, Chen ZX, Lei AP, Wang JX. 2022. Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglena gracilis. Mar. Drugs 20: 496.
  32. Boussiba S, Bing W, Yuan JP, Zarka A, Chen F. 1999. Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnol. Lett. 21: 601-604. https://doi.org/10.1023/A:1005507514694
  33. Yee W, Tang SGH, Phua PSP, Megawarnan H. 2019. Long-term maintenance of 23 strains of freshwater microalgae on solid microbiological culture media: a preliminary study. Algal Res. 41: 101516.
  34. Guo H, Daroch M, Liu L, Qiu G, Geng S, Wang G. 2013. Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour. Technol. 127: 422-428. https://doi.org/10.1016/j.biortech.2012.10.006
  35. Ota S, Yoshihara M, Yamazaki T, Takeshita T, Hirata A, Konomi M, et al. 2016. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri. Sci. Rep. 6: 25731.
  36. Yang F, Xiang W, Li T, Long L. 2018. Transcriptome analysis for phosphorus starvation-induced lipid accumulation in Scenedesmus sp. Sci. Rep. 8: 16420.
  37. Yodsuwan N, Sawayama S, Sirisansaneeyakul S. 2017. Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum. Agric. Nat. Resour. 51: 190-197.
  38. Zarrinmehr MJ, Farhadian O, Heyrati FP, Keramat J, Koutra E, Kornaros M, et al. 2020. Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt. J. Aquat. Res. 46: 153-158. https://doi.org/10.1016/j.ejar.2019.11.003
  39. da Silva Ferreira V, Sant'Anna C. 2017. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J. Microbiol. Biotechnol. 33: 20.
  40. Belotti G, de Caprariis B, De Filippis P, Scarsella M, Verdone N. 2014. Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass Bioenerg. 61: 187-195. https://doi.org/10.1016/j.biombioe.2013.12.011
  41. Fan J, Cui Y, Wan M, Wang W, Li Y. 2014. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol. Biofuels. 7: 17.
  42. Sanchez JF, Fernandez JM, Acien FG, Rueda A, Perez-Parra J, Molina E. 2008. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 43: 398-405. https://doi.org/10.1016/j.procbio.2008.01.004
  43. Fernandez-Sevilla JM, Acien Fernandez F, Molina Grima E. 2010. Biotechnological production of lutein and its applications. Appl. Microbiol. Biotechnol. 86: 27-40. https://doi.org/10.1007/s00253-009-2420-y
  44. Henriquez V, Escobar C, Galarza J, Gimpel J. 2016. Carotenoids in microalgae, pp. 219-237. In Stange C (ed.), Carotenoids in Nature, Ed. Springer Cham, Switzerland
  45. Mulders KJ, Lamers PP, Martens DE, Wijffels RH. 2014. Phototrophic pigment production with microalgae: biological constraints and opportunities. J. Phycol. 50: 229-242. https://doi.org/10.1111/jpy.12173
  46. Kim M, Kang Y, Jin E. 2019. Gene expression analysis of zeaxanthin epoxidase from the marine microalga Dunaliella tertiolecta in response to light/dark cycle and salinity. J. Microbiol. Biotechnol. 29: 1453-1459. https://doi.org/10.4014/jmb.1904.04053
  47. Schuler LM, Santos T, Pereira H, Duarte P, Katkam NG, Florindo C, et al. 2020. Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Res. 45: 101732.
  48. Vaquero I, Mogedas B, Ruiz-Dominguez MC, Vega JM, Vilchez C. 2014. Light-mediated lutein enrichment of an acid environment microalga. Algal Res. 6: 70-77. https://doi.org/10.1016/j.algal.2014.09.005
  49. Yeh TJ, Tseng YF, Chen YC, Hsiao Y, Lee PC, Chen TJ, et al. 2017. Transcriptome and physiological analysis of a lutein-producing alga Desmodesmus sp. reveals the molecular mechanisms for high lutein productivity. Algal Res. 21: 103-119. https://doi.org/10.1016/j.algal.2016.11.013
  50. Heo J, Shin DS, Cho K, Cho DH, Lee YJ, Kim HS. 2018. Indigenous microalga Parachlorella sp. JD-076 as a potential source for lutein production: optimization of lutein productivity via regulation of light intensity and carbon source. Algal Res. 33: 1-7.  https://doi.org/10.1016/j.algal.2018.04.029