Acknowledgement
Support for this work was provided by the California Energy Commission (ARV-15-008). The authors extend their gratitude to Dr. Zhiliang Fan and Dr. Bryan Jenkins for their review and thoughtful comments on an early version of the manuscript, and Sam Hornstein and Lin Cao for their assistance with lab experiments.
References
- Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
- Moreno-Garrido I. 2008. Microalgae immobilization: current techniques and uses. Bioresour. Technol. 99: 3949-3964. https://doi.org/10.1016/j.biortech.2007.05.040
- Caldwell GS, In-Na P, Hart R, Sharp E, Stefanova A, Pickersgill M, et al. 2021. Immobilising microalgae and cyanobacteria as biocomposites: new opportunities to intensify algae biotechnology and bioprocessing. Energies (Basel) 14: 2566.
- Luo S, Wu X, Jiang H, Yu M, Liu Y, Min A, et al. 2019. Edible fungi-assisted harvesting system for efficient microalgae bioflocculation. Bioresour. Technol. 282: 325-330. https://doi.org/10.1016/j.biortech.2019.03.033
- Wang X, Yang C, Yu Y, Zhao Y. 2022. In Situ 3D Bioprinting living photosynthetic scaffolds for autotrophic wound healing. Research (Wash DC) 2022: 9794745.
- Zhou W, Min M, Hu B, Ma X, Liu Y, Wang Q, Shi J, Chen P, Ruan R. 2013. Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Sep. Purif. Technol. 107: 158-165. https://doi.org/10.1016/j.seppur.2013.01.030
- Zhang J, Hu B. 2012. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour. Technol. 114: 529-535. https://doi.org/10.1016/j.biortech.2012.03.054
- Rajendran A, Hu B. 2016. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures. Biotechnol. Biofuels 9: 1-13. https://doi.org/10.1186/s13068-015-0423-8
- Gultom S, Hu B. 2013. Review of microalgae harvesting via Co-pelletization with filamentous fungus. Energies (Basel) 6: 5921-5939. https://doi.org/10.3390/en6115921
- Al-Hothaly KA, Adetutu EM, Taha M, Fabbri D, Lorenzetti C, Conti R, et al. 2015. Bio-harvesting and pyrolysis of the microalgae Botryococcus braunii. Bioresour. Technol. 191: 117-123. https://doi.org/10.1016/j.biortech.2015.04.113
- Muradov N, Taha M, Miranda AF, Wrede D, Kadali K, Gujar A, et al. 2015. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol. Biofuels 8: 24.
- Nasir NM, Bakar NSA, Lananan F, Abdul Hamid SH, Lam SS, Jusoh A. 2015. Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting. Bioresour. Technol. 190: 492-498. https://doi.org/10.1016/j.biortech.2015.03.023
- Prajapati SK, Bhattacharya A, Kumar P, Malik A, Vijay VK. 2016. A method for simultaneous bioflocculation and pretreatment of algal biomass targeting improved methane production. Green Chem. 18: 5230-5238. https://doi.org/10.1039/C6GC01483F
- Bhattacharya A, Mathur M, Kumar P, Prajapati SK, Malik A. 2017. A rapid method for fungal assisted algal flocculation: critical parameters & mechanism insights. Algal Res. 21: 42-51. https://doi.org/10.1016/j.algal.2016.10.022
- Bhattacharya A, Malik A, Malik HK. 2017. A mathematical model to describe the fungal assisted algal flocculation process. Bioresour. Technol. 244: 975-981. https://doi.org/10.1016/j.biortech.2017.08.062
- Bhattacharya A, Mathur M, Kumar P, Malik A. 2019. Potential role of N-acetyl glucosamine in Aspergillus fumigatus-assisted Chlorella pyrenoidosa harvesting. Biotechnol. Biofuels 12: 178.
- Miranda AF, Taha M, Wrede D, Morrison P, Ball AS, Stevenson T, Mouradov A. 2015. Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells. Biotechnol. Biofuels 8: 179.
- Barzee TJ, Cao L, Pan Z, Zhang R. 2021. Fungi for future foods. J. Future Foods 1: 25-37. https://doi.org/10.1016/j.jfutfo.2021.09.002
- Zhou W, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, et al. 2012. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl. Biochem. Biotechnol. 167: 214-228. https://doi.org/10.1007/s12010-012-9667-y
- Zhao Y, Guo G, Sun S, Hu C, Liu J. 2019. Co-pelletization of microalgae and fungi for efficient nutrient purification and biogas upgrading. Bioresour. Technol. 289: 121656.
- Wrede D, Taha M, Miranda AF, Kadali K, Stevenson T, Ball AS, et al. 2014. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS One 9: e113497.
- Silva A, Delerue-Matos C, Figueiredo SA, Freitas OM. 2019. The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: a review. Water (Basel) 11: 1555.
- Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239-244. https://doi.org/10.1038/nature07410
- Maheswari U, Mock T, Armbrust EV, Bowler C. 2009. Update of the Diatom EST Database: a new tool for digital transcriptomics. Nucleic Acids Res. 37: D1001-D1005. https://doi.org/10.1093/nar/gkn905
- Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R. 2012. The place of diatoms in the biofuels industry. Biofuels 3: 221-240. https://doi.org/10.4155/bfs.11.157
- Burch AR, Franz AK. 2016. Combined nitrogen limitation and hydrogen peroxide treatment enhances neutral lipid accumulation in the marine diatom Phaeodactylum tricornutum. Bioresour. Technol. 219: 559-565. https://doi.org/10.1016/j.biortech.2016.08.010
- Branco-Vieira M, Martin SS, Agurto C, Santos MA, Freitas MAV, Caetano NS. 2017. Analyzing Phaeodactylum tricornutum lipid profile for biodiesel production. Energy Procedia 136: 369-373. https://doi.org/10.1016/j.egypro.2017.10.251
- Burch AR, Yothers CW, Salemi MR, Phinney BS, Pandey P, Franz AK. 2021. Quantitative label-free proteomics and biochemical analysis of Phaeodactylum tricornutum cultivation on dairy manure wastewater. J. Appl. Phycol. 33: 2105-2121. https://doi.org/10.1007/s10811-021-02483-3
- APHA, AWWA, WEF. 2017. Standard Methods for the Examination of Water and Wastewater. 23rd Ed. American Public Health Association, Washington D.C.
- Bechet Q, Laviale M, Arsapin N, Bonnefond H, Bernard O. 2017. Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnol. Biofuels 10: 136.
- Petruzzi L, Campaniello D, Speranza B, Corbo MR, Sinigaglia M, Bevilacqua A. 2017. Thermal treatments for fruit and vegetable juices and beverages: a literature overview. Compr. Rev. Food Sci. Food Saf. 16: 668-691. https://doi.org/10.1111/1541-4337.12270
- Zepka LQ, Borsarelli CD, da Silva MAAP, Mercadante AZ. 2009. Thermal degradation kinetics of carotenoids in a cashew apple juice model and its impact on the system color. J. Agric. Food Chem. 57: 7841-7845. https://doi.org/10.1021/jf900558a
- Tseng RL, Wu FC. 2008. Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant. J. Hazard. Mater. 155: 277-287. https://doi.org/10.1016/j.jhazmat.2007.11.061
- Chaudhry SA, Khan TA, Ali I. 2017. Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: isotherm, kinetic and thermodynamic studies. Egypt. J. Pet. 26: 553-563. https://doi.org/10.1016/j.ejpe.2016.11.006
- Chaudhry SA, Khan TA, Ali I. 2017. Equilibrium, kinetic and thermodynamic studies of Cr(VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J. Mol. Liq. 236: 320-330. https://doi.org/10.1016/j.molliq.2017.04.029
- Ho YS. 2004. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59: 171-177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
- Du ZY, Alvaro J, Hyden B, Zienkiewicz K, Benning N, Zienkiewicz A, et al. 2018. Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnol. Biofuels 11: 174.
- Hallab NJ, Bundy KJ, O'Connor K, Moses RL, Jacobs JJ. 2001. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 7: 55-71. https://doi.org/10.1089/107632700300003297
- Kobayashi Y, Harada N, Nishimura Y, Saito T, Nakamura M, Fujiwara T, et al. 2014. Algae sense exact temperatures: small heat shock proteins are expressed at the survival threshold temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii. Genome Biol. Evol. 29: 2731-2740. https://doi.org/10.1093/gbe/evu216
- Keller JU, Staudt R. 2005. Adsorption Isotherms, pp. 359-404. In Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms. Springer Science + Business Media, Inc, Boston, MA.
- Brennan JK, Bandosz TJ, Thomson KT, Gubbins KE. 2001. Water in porous carbons. Colloids and Surfaces A: Physicochem. Eng. Aspects 187-188: 539-568. https://doi.org/10.1016/S0927-7757(01)00644-6
- Zamalloa C, Gultom SO, Rajendran A, Hu B. 2017. Ionic effects on microalgae harvest via microalgae-fungi co-pelletization. Biocatal. Agric. Biotechnol. 9: 145-155. https://doi.org/10.1016/j.bcab.2016.12.007
- Negm NA, Abd El Wahed MG, Hassan ARA, Abou Kana MTH. 2018. Feasibility of metal adsorption using brown algae and fungi: effect of biosorbents structure on adsorption isotherm and kinetics. J. Mol. Liq. 264: 292-305. https://doi.org/10.1016/j.molliq.2018.05.027
- Uggetti E, Sialve B, Latrille E, Steyer JP. 2014. Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresour. Technol. 152: 437-443. https://doi.org/10.1016/j.biortech.2013.11.036
- Xie S, Sun S, Dai SY, S.Yuan J. 2013. Efficient coagulation of microalgae in cultures with filamentous fungi. Algal. Res. 2: 28-33. https://doi.org/10.1016/j.algal.2012.11.004
- Choi YN, Cho HU, Utomo JC, Shin DY, Kim HK, Park JM. 2016. Efficient harvesting of Synechocystis sp. PCC 6803 with filamentous fungal pellets. J. Appl. Phycol. 28: 2225-2231. https://doi.org/10.1007/s10811-015-0787-y
- Ogawa, M, Garcia, JM, Nitin, N, Baar, K, Block, DE. 2022. Assessing edible filamentous fungal carriers as cell supports for growth of yeast and cultivated meat. Foods 11: 3142.