Acknowledgement
This research was supported by the Chung-Ang University Graduate Research Scholarship in 2022, and the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning, 2021M3A9I4021431 and 2022R1F1A1065306.
References
- 1. Ramsey MM, Freire MO, Gabrilska RA, Rumbaugh KP, Lemon KP. 2016. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front. Microbiol. 7: 1230.
- Kim HJ, Oh HN, Park T, Kim H, Lee HG, An S, et al. 2022. Aged related human skin microbiome and mycobiome in Korean women. Sci. Rep. 12: 2351.
- Tao R, Li R, Wang R. 2022. Dysbiosis of skin mycobiome in atopic dermatitis. Mycoses. 65: 285-293. https://doi.org/10.1111/myc.13402
- Chatterjee P, Sass G, Swietnicki W, Stevens DA. 2020. Review of potential Pseudomonas weaponry, relevant to the Pseudomonas-Aspergillus interplay, for the mycology community. J. Fungi (Basel). 6: 81.
- Al-Fattani MA, Douglas LJ. 2004. Penetration of Candida biofilms by antifungal agents. Antimicrob. Agents Chemother. 48: 3291-3297. https://doi.org/10.1128/AAC.48.9.3291-3297.2004
- Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ, Goh A, et al. 2018. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138: 1137-1145. https://doi.org/10.1016/j.jid.2017.11.034
- Gueho E, Midgley G, Guillot J. 1996. The genus Malassezia with description of four new species. Antonie Van Leeuwenhoek 69: 337-355. https://doi.org/10.1007/BF00399623
- Cho YJ, Kim T, Croll D, Park M, Kim D, Keum HL, et al. 2022. Genome of Malassezia arunalokei and its distribution on facial skin. Microbiol. Spectr. 10: e0050622.
- Honnavar P, Prasad GS, Ghosh A, Dogra S, Handa S, Rudramurthy SM. 2016. Malassezia arunalokei sp. nov., a novel yeast species isolated from seborrheic dermatitis patients and healthy individuals from India. J. Clin. Microbiol. 54: 1826-1834. https://doi.org/10.1128/JCM.00683-16
- Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson Jr TL. 2018. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. 56: S10-S25. https://doi.org/10.1093/mmy/myx134
- Gupta AK, Batra R, Bluhm R, Boekhout T, Dawson TL, Jr. 2004. Skin diseases associated with Malassezia species. J. Am. Acad. Dermatol. 51: 785-798. https://doi.org/10.1016/j.jaad.2003.12.034
- Pierard-Franchimont C, Pierard GE, Arrese JE, De Doncker P. 2001. Effect of ketoconazole 1% and 2% shampoos on severe dandruff and seborrhoeic dermatitis: clinical, squamometric and mycological assessments. Dermatology 202: 171-176. https://doi.org/10.1159/000051628
- Goularte-Silva V, Paulino LC. 2022. Ketoconazole beyond antifungal activity: Bioinformatics-based hypothesis on lipid metabolism in dandruff and seborrheic dermatitis. Exp. Dermatol. 31: 821-822. https://doi.org/10.1111/exd.14505
- Levine HB, Cobb JM. 1978. Oral therapy for experimental coccidioidomycosis with R41 400 (ketoconazole), a new imidazole. Am. Rev. Respir. Dis. 118: 715-721. https://doi.org/10.1164/arrd.1978.118.4.715
- Prasad R, Shah AH, Rawal MK. 2016. Antifungals: Mechanism of action and drug resistance. Adv. Exp. Med. Biol. 892: 327-349. https://doi.org/10.1007/978-3-319-25304-6_14
- Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Kelly DE. 1995. Mode of action and resistance to azole antifungals associated with the formation of 14α-methylergosta-8, 24 (28)-dien-3β, 6α-diol. Biochem. Biophys. Res. Commun. 207: 910-915. https://doi.org/10.1006/bbrc.1995.1272
- Park M, Cho YJ, Lee YW, Jung. WH. 2020. Genomic multiplication and drug efflux influence ketoconazole resistance in Malassezia restricta. Front. Cell Infect. Microbiol. 10: 191.
- Kim M, Cho Y-J, Park M, Choi Y, Hwang SY, Jung WH. 2018. Genomic tandem quadruplication is associated with ketoconazole resistance in Malassezia pachydermatis. J. Microbiol. Biotechnol. 28: 1937-1945. https://doi.org/10.4014/jmb.1810.10019
- Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G. 2005. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob. Agents Chemother. 49: 668-679. https://doi.org/10.1128/AAC.49.2.668-679.2005
- Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. 2015. Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med. 5: a019752.
- Geber A, Hitchcock CA, Swartz JE, Pullen FS, Marsden KE, Kwon-Chung KJ, et al. 1995. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob. Agents and Chemother. 39: 2708-2717. https://doi.org/10.1128/AAC.39.12.2708
- Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, et al. 2013. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob. Agents Chemother. 57: 3182-3193. https://doi.org/10.1128/AAC.00555-13
- Park M, Cho YJ, Lee YW, Jung WH. 2017. Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses. 60: 188-197. https://doi.org/10.1111/myc.12586
- Leeming JP, Notman FH. 1987. Improved methods for isolation and enumeration of Malassezia furfur from human skin. J. Clin. Microbiol. 25: 2017-2019. https://doi.org/10.1128/jcm.25.10.2017-2019.1987
- Midgley G. 1989. The diversity of Pityrosporum (Malassezia) yeasts in vivo and in vitro. Mycopathologia 106: 143-153. https://doi.org/10.1007/BF00443055
- Doyle JE, Mehrhof WH, Ernst RR. 1968. Limitations of thioglycolate broth as a sterility test medium for materials exposed to gaseous ethylene oxide. Appl. Microbiol. 16: 1742-1744. https://doi.org/10.1128/am.16.11.1742-1744.1968
- Piddock LJ. 1990. Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. Antimicrobial Agents Research Group. J. Appl. Bacteriol. 68: 307-318. https://doi.org/10.1111/j.1365-2672.1990.tb02880.x
- Kim HJ, Jeong H, Lee SJ. 2020. Short-term adaptation modulates anaerobic metabolic flux to succinate by activating ExuT, a novel D-glucose transporter in Escherichia coli. Front. Microbiol. 11: 27.
- Varga M, Bartok T, Mesterhazy A. 2006. Determination of ergosterol in Fusarium-infected wheat by liquid chromatography-atmospheric pressure photoionization mass spectrometry. J. Chromatogr. A 1103: 278-283. https://doi.org/10.1016/j.chroma.2005.11.051
- Park M, Cho YJ, Kim D, Yang CS, Lee SM, Dawson TL, Jr., et al. 2020. A novel virus alters gene expression and vacuolar morphology in Malassezia cells and induces a TLR3-mediated inflammatory immune response. mBio 11: e01521-20.
- Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. 2013. Topographic diversity of fungal and bacterial communities in human skin. Nature 498: 367-370. https://doi.org/10.1038/nature12171
- Danby CS, Boikov D, Rautemaa-Richardson R, Sobel JD. 2012. Effect of pH on in vitro susceptibility of Candida glabrata and Candida albicans to 11 antifungal agents and implications for clinical use. Antimicrob. Agents Chemother. 56: 1403-1406. https://doi.org/10.1128/AAC.05025-11
- Liu-Walsh F, Tierney NK, Hauschild J, Rush AK, Masucci J, Leo GC, et al. 2021. Prebiotic colloidal oat supports the growth of cutaneous commensal bacteria including S. epidermidis and enhances the production of lactic acid. Clin. Cosmet. Investig. Dermatol. 14: 73-82. https://doi.org/10.2147/CCID.S253386
- vanden Bossche H, Marichal P, Odds FC, Le Jeune L, Coene MC. 1992. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob. Agents Chemother. 36: 2602-2610. https://doi.org/10.1128/AAC.36.12.2602
- Khalaf RA, Fattouh N, Medvecky M, Hrabak J. 2021. Whole genome sequencing of a clinical drug resistant Candida albicans isolate reveals known and novel mutations in genes involved in resistance acquisition mechanisms. J. Med. Microbiol. 70: 001351.
- Jiang C, Dong D, Yu B, Cai G, Wang X, Ji Y, et al. 2013. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J. Antimicrob. Chemother. 68: 778-785. https://doi.org/10.1093/jac/dks481
- Prasad T, Chandra A, Mukhopadhyay CK, Prasad R. 2006. Unexpected link between iron and drug resistance of Candida spp.: Iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob. Agents Chemother. 50: 3597-3606. https://doi.org/10.1128/AAC.00653-06
- Zarember KA, Cruz AR, Huang CY, Gallin JI. 2009. Antifungal activities of natural and synthetic iron chelators alone and in combination with azole and polyene antibiotics against Aspergillus fumigatus. Antimicrob. Agents Chemother. 53: 2654-2656. https://doi.org/10.1128/AAC.01547-08
- Kim J, Cho YJ, Do E, Choi J, Hu G, Cadieux B, et al. 2012. A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs. Fungal Genet. Biol. 49: 955-966. https://doi.org/10.1016/j.fgb.2012.08.006
- Hosogaya N, Miyazaki T, Nagi M, Tanabe K, Minematsu A, Nagayoshi Y, et al. 2013. The heme-binding protein Dap1 links iron homeostasis to azole resistance via the P450 protein Erg11 in Candida glabrata. FEMS Yeast Res. 13: 411-421. https://doi.org/10.1111/1567-1364.12043
- Craven RJ, Mallory JC, Hand RA. 2007. Regulation of iron homeostasis mediated by the heme-binding protein Dap1 (damage resistance protein 1) via the P450 protein Erg11/Cyp51. J. Biol. Chem. 282: 36543-36551. https://doi.org/10.1074/jbc.M706770200
- Agarwal AK, Xu T, Jacob MR, Feng Q, Lorenz MC, Walker LA, et al. 2008. Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine. Eukaryot Cell 7: 387-400. https://doi.org/10.1128/EC.00323-07
- Rogers TE, Galgiani JN. 1986. Activity of fluconazole (UK 49,858) and ketoconazole against Candida albicans in vitro and in vivo. Antimicrob. Agents Chemother. 30: 418-422. https://doi.org/10.1128/AAC.30.3.418
- McIntyre KA, Galgiani JN. 1989. In vitro susceptibilities of yeasts to a new antifungal triazole, SCH 39304: effects of test conditions and relation to in vivo efficacy. Antimicrob. Agents Chemother. 33: 1095-1100. https://doi.org/10.1128/AAC.33.7.1095
- Peng T, Galgiani JN. 1993. In vitro studies of a new antifungal triazole, D0870, against Candida albicans, Cryptococcus neoformans, and other pathogenic yeasts. Antimicrob. Agents Chemother. 37: 2126-2131. https://doi.org/10.1128/AAC.37.10.2126
- Liu W, Zhang X, Liu Z, Luo X. 2011. Impact of pH on the antifungal susceptibility of vaginal Candida albicans. Int. J. Gynaecol. Obstet. 114: 278-280. https://doi.org/10.1016/j.ijgo.2011.03.016
- Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. 2010. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog. 6: e1000939.
- Sambade M, Kane PM. 2004. The yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function. J. Biol. Chem. 279: 17361-17365. https://doi.org/10.1074/jbc.M314104200
- Proksch E. 2018. pH in nature, humans and skin. J. Dermatol. 45: 1044-1052. https://doi.org/10.1111/1346-8138.14489
- Elias PM. 2012. Structure and function of the stratum corneum extracellular matrix. J. Invest. Dermatol. 132: 2131-2133. https://doi.org/10.1038/jid.2012.246
- Jensen JM, Schutze S, Forl M, Kronke M, Proksch E. 1999. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J. Clin. Invest. 104: 1761-1770. https://doi.org/10.1172/JCI5307
- Lund P, Tramonti A, De Biase D. 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 38: 1091-1125. https://doi.org/10.1111/1574-6976.12076
- Costa FG, Horswill AR. 2022. Overcoming pH defenses on the skin to establish infections. PLoS Pathog. 18: e1010512.
- Sun JL, Zhang SK, Chen JY, Han BZ. 2012. Metabolic profiling of Staphylococcus aureus cultivated under aerobic and anaerobic conditions with (1)H NMR-based nontargeted analysis. Can. J. Microbiol. 58: 709-718. https://doi.org/10.1139/w2012-046
- Mallory JC, Crudden G, Johnson BL, Mo C, Pierson CA, Bard M, et al. 2005. Dap1p, a heme-binding protein that regulates the cytochrome P450 protein Erg11p/Cyp51p in Saccharomyces cerevisiae. Mol. Cell Biol. 25: 1669-1679. https://doi.org/10.1128/MCB.25.5.1669-1679.2005