DOI QR코드

DOI QR Code

The Interkingdom Interaction with Staphylococcus Influences the Antifungal Susceptibility of the Cutaneous Fungus Malassezia

  • Juan Yang (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University) ;
  • Sungmin Park (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University) ;
  • Hyun Ju Kim (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University) ;
  • Sang Jun Lee (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University) ;
  • Won Hee Jung (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University)
  • Received : 2022.10.24
  • Accepted : 2022.12.12
  • Published : 2023.02.28

Abstract

The skin is a dynamic ecosystem on which diverse microbes reside. The interkingdom interaction between microbial species in the skin microbiota is thought to influence the health and disease of the skin although the roles of the intra- and interkingdom interactions remain to be elucidated. In this context, the interactions between Malassezia and Staphylococcus, the most dominant microorganisms in the skin microbiota, have gained attention. This study investigated how the interaction between Malassezia and Staphylococcus affected the antifungal susceptibility of the fungus to the azole antifungal drug ketoconazole. The susceptibility was significantly decreased when Malassezia was co-cultured with Staphylococcus. We found that acidification of the environment by organic acids produced by Staphylococcus influenced the decrease of the ketoconazole susceptibility of M. restricta in the co-culturing condition. Furthermore, our data demonstrated that the significant increased ergosterol content and cell membrane and wall thickness of the M. restricta cells grown in the acidic environment may be the main cause of the altered azole susceptibility of the fungus. Overall, our study suggests that the interaction between Malassezia and Staphylococcus influences the antifungal susceptibility of the fungus and that pH has a critical role in the polymicrobial interaction in the skin environment.

Keywords

Acknowledgement

This research was supported by the Chung-Ang University Graduate Research Scholarship in 2022, and the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning, 2021M3A9I4021431 and 2022R1F1A1065306.

References

  1. 1. Ramsey MM, Freire MO, Gabrilska RA, Rumbaugh KP, Lemon KP. 2016. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front. Microbiol. 7: 1230.
  2. Kim HJ, Oh HN, Park T, Kim H, Lee HG, An S, et al. 2022. Aged related human skin microbiome and mycobiome in Korean women. Sci. Rep. 12: 2351.
  3. Tao R, Li R, Wang R. 2022. Dysbiosis of skin mycobiome in atopic dermatitis. Mycoses. 65: 285-293. https://doi.org/10.1111/myc.13402
  4. Chatterjee P, Sass G, Swietnicki W, Stevens DA. 2020. Review of potential Pseudomonas weaponry, relevant to the Pseudomonas-Aspergillus interplay, for the mycology community. J. Fungi (Basel). 6: 81.
  5. Al-Fattani MA, Douglas LJ. 2004. Penetration of Candida biofilms by antifungal agents. Antimicrob. Agents Chemother. 48: 3291-3297. https://doi.org/10.1128/AAC.48.9.3291-3297.2004
  6. Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ, Goh A, et al. 2018. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138: 1137-1145. https://doi.org/10.1016/j.jid.2017.11.034
  7. Gueho E, Midgley G, Guillot J. 1996. The genus Malassezia with description of four new species. Antonie Van Leeuwenhoek 69: 337-355. https://doi.org/10.1007/BF00399623
  8. Cho YJ, Kim T, Croll D, Park M, Kim D, Keum HL, et al. 2022. Genome of Malassezia arunalokei and its distribution on facial skin. Microbiol. Spectr. 10: e0050622.
  9. Honnavar P, Prasad GS, Ghosh A, Dogra S, Handa S, Rudramurthy SM. 2016. Malassezia arunalokei sp. nov., a novel yeast species isolated from seborrheic dermatitis patients and healthy individuals from India. J. Clin. Microbiol. 54: 1826-1834. https://doi.org/10.1128/JCM.00683-16
  10. Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson Jr TL. 2018. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. 56: S10-S25. https://doi.org/10.1093/mmy/myx134
  11. Gupta AK, Batra R, Bluhm R, Boekhout T, Dawson TL, Jr. 2004. Skin diseases associated with Malassezia species. J. Am. Acad. Dermatol. 51: 785-798. https://doi.org/10.1016/j.jaad.2003.12.034
  12. Pierard-Franchimont C, Pierard GE, Arrese JE, De Doncker P. 2001. Effect of ketoconazole 1% and 2% shampoos on severe dandruff and seborrhoeic dermatitis: clinical, squamometric and mycological assessments. Dermatology 202: 171-176. https://doi.org/10.1159/000051628
  13. Goularte-Silva V, Paulino LC. 2022. Ketoconazole beyond antifungal activity: Bioinformatics-based hypothesis on lipid metabolism in dandruff and seborrheic dermatitis. Exp. Dermatol. 31: 821-822. https://doi.org/10.1111/exd.14505
  14. Levine HB, Cobb JM. 1978. Oral therapy for experimental coccidioidomycosis with R41 400 (ketoconazole), a new imidazole. Am. Rev. Respir. Dis. 118: 715-721. https://doi.org/10.1164/arrd.1978.118.4.715
  15. Prasad R, Shah AH, Rawal MK. 2016. Antifungals: Mechanism of action and drug resistance. Adv. Exp. Med. Biol. 892: 327-349. https://doi.org/10.1007/978-3-319-25304-6_14
  16. Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Kelly DE. 1995. Mode of action and resistance to azole antifungals associated with the formation of 14α-methylergosta-8, 24 (28)-dien-3β, 6α-diol. Biochem. Biophys. Res. Commun. 207: 910-915. https://doi.org/10.1006/bbrc.1995.1272
  17. Park M, Cho YJ, Lee YW, Jung. WH. 2020. Genomic multiplication and drug efflux influence ketoconazole resistance in Malassezia restricta. Front. Cell Infect. Microbiol. 10: 191.
  18. Kim M, Cho Y-J, Park M, Choi Y, Hwang SY, Jung WH. 2018. Genomic tandem quadruplication is associated with ketoconazole resistance in Malassezia pachydermatis. J. Microbiol. Biotechnol. 28: 1937-1945. https://doi.org/10.4014/jmb.1810.10019
  19. Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G. 2005. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob. Agents Chemother. 49: 668-679. https://doi.org/10.1128/AAC.49.2.668-679.2005
  20. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. 2015. Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med. 5: a019752.
  21. Geber A, Hitchcock CA, Swartz JE, Pullen FS, Marsden KE, Kwon-Chung KJ, et al. 1995. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob. Agents and Chemother. 39: 2708-2717. https://doi.org/10.1128/AAC.39.12.2708
  22. Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, et al. 2013. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob. Agents Chemother. 57: 3182-3193. https://doi.org/10.1128/AAC.00555-13
  23. Park M, Cho YJ, Lee YW, Jung WH. 2017. Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses. 60: 188-197. https://doi.org/10.1111/myc.12586
  24. Leeming JP, Notman FH. 1987. Improved methods for isolation and enumeration of Malassezia furfur from human skin. J. Clin. Microbiol. 25: 2017-2019. https://doi.org/10.1128/jcm.25.10.2017-2019.1987
  25. Midgley G. 1989. The diversity of Pityrosporum (Malassezia) yeasts in vivo and in vitro. Mycopathologia 106: 143-153. https://doi.org/10.1007/BF00443055
  26. Doyle JE, Mehrhof WH, Ernst RR. 1968. Limitations of thioglycolate broth as a sterility test medium for materials exposed to gaseous ethylene oxide. Appl. Microbiol. 16: 1742-1744. https://doi.org/10.1128/am.16.11.1742-1744.1968
  27. Piddock LJ. 1990. Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. Antimicrobial Agents Research Group. J. Appl. Bacteriol. 68: 307-318. https://doi.org/10.1111/j.1365-2672.1990.tb02880.x
  28. Kim HJ, Jeong H, Lee SJ. 2020. Short-term adaptation modulates anaerobic metabolic flux to succinate by activating ExuT, a novel D-glucose transporter in Escherichia coli. Front. Microbiol. 11: 27.
  29. Varga M, Bartok T, Mesterhazy A. 2006. Determination of ergosterol in Fusarium-infected wheat by liquid chromatography-atmospheric pressure photoionization mass spectrometry. J. Chromatogr. A 1103: 278-283. https://doi.org/10.1016/j.chroma.2005.11.051
  30. Park M, Cho YJ, Kim D, Yang CS, Lee SM, Dawson TL, Jr., et al. 2020. A novel virus alters gene expression and vacuolar morphology in Malassezia cells and induces a TLR3-mediated inflammatory immune response. mBio 11: e01521-20.
  31. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. 2013. Topographic diversity of fungal and bacterial communities in human skin. Nature 498: 367-370. https://doi.org/10.1038/nature12171
  32. Danby CS, Boikov D, Rautemaa-Richardson R, Sobel JD. 2012. Effect of pH on in vitro susceptibility of Candida glabrata and Candida albicans to 11 antifungal agents and implications for clinical use. Antimicrob. Agents Chemother. 56: 1403-1406. https://doi.org/10.1128/AAC.05025-11
  33. Liu-Walsh F, Tierney NK, Hauschild J, Rush AK, Masucci J, Leo GC, et al. 2021. Prebiotic colloidal oat supports the growth of cutaneous commensal bacteria including S. epidermidis and enhances the production of lactic acid. Clin. Cosmet. Investig. Dermatol. 14: 73-82. https://doi.org/10.2147/CCID.S253386
  34. vanden Bossche H, Marichal P, Odds FC, Le Jeune L, Coene MC. 1992. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob. Agents Chemother. 36: 2602-2610. https://doi.org/10.1128/AAC.36.12.2602
  35. Khalaf RA, Fattouh N, Medvecky M, Hrabak J. 2021. Whole genome sequencing of a clinical drug resistant Candida albicans isolate reveals known and novel mutations in genes involved in resistance acquisition mechanisms. J. Med. Microbiol. 70: 001351.
  36. Jiang C, Dong D, Yu B, Cai G, Wang X, Ji Y, et al. 2013. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J. Antimicrob. Chemother. 68: 778-785. https://doi.org/10.1093/jac/dks481
  37. Prasad T, Chandra A, Mukhopadhyay CK, Prasad R. 2006. Unexpected link between iron and drug resistance of Candida spp.: Iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob. Agents Chemother. 50: 3597-3606. https://doi.org/10.1128/AAC.00653-06
  38. Zarember KA, Cruz AR, Huang CY, Gallin JI. 2009. Antifungal activities of natural and synthetic iron chelators alone and in combination with azole and polyene antibiotics against Aspergillus fumigatus. Antimicrob. Agents Chemother. 53: 2654-2656. https://doi.org/10.1128/AAC.01547-08
  39. Kim J, Cho YJ, Do E, Choi J, Hu G, Cadieux B, et al. 2012. A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs. Fungal Genet. Biol. 49: 955-966. https://doi.org/10.1016/j.fgb.2012.08.006
  40. Hosogaya N, Miyazaki T, Nagi M, Tanabe K, Minematsu A, Nagayoshi Y, et al. 2013. The heme-binding protein Dap1 links iron homeostasis to azole resistance via the P450 protein Erg11 in Candida glabrata. FEMS Yeast Res. 13: 411-421. https://doi.org/10.1111/1567-1364.12043
  41. Craven RJ, Mallory JC, Hand RA. 2007. Regulation of iron homeostasis mediated by the heme-binding protein Dap1 (damage resistance protein 1) via the P450 protein Erg11/Cyp51. J. Biol. Chem. 282: 36543-36551. https://doi.org/10.1074/jbc.M706770200
  42. Agarwal AK, Xu T, Jacob MR, Feng Q, Lorenz MC, Walker LA, et al. 2008. Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine. Eukaryot Cell 7: 387-400. https://doi.org/10.1128/EC.00323-07
  43. Rogers TE, Galgiani JN. 1986. Activity of fluconazole (UK 49,858) and ketoconazole against Candida albicans in vitro and in vivo. Antimicrob. Agents Chemother. 30: 418-422. https://doi.org/10.1128/AAC.30.3.418
  44. McIntyre KA, Galgiani JN. 1989. In vitro susceptibilities of yeasts to a new antifungal triazole, SCH 39304: effects of test conditions and relation to in vivo efficacy. Antimicrob. Agents Chemother. 33: 1095-1100. https://doi.org/10.1128/AAC.33.7.1095
  45. Peng T, Galgiani JN. 1993. In vitro studies of a new antifungal triazole, D0870, against Candida albicans, Cryptococcus neoformans, and other pathogenic yeasts. Antimicrob. Agents Chemother. 37: 2126-2131. https://doi.org/10.1128/AAC.37.10.2126
  46. Liu W, Zhang X, Liu Z, Luo X. 2011. Impact of pH on the antifungal susceptibility of vaginal Candida albicans. Int. J. Gynaecol. Obstet. 114: 278-280. https://doi.org/10.1016/j.ijgo.2011.03.016
  47. Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. 2010. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog. 6: e1000939.
  48. Sambade M, Kane PM. 2004. The yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function. J. Biol. Chem. 279: 17361-17365. https://doi.org/10.1074/jbc.M314104200
  49. Proksch E. 2018. pH in nature, humans and skin. J. Dermatol. 45: 1044-1052. https://doi.org/10.1111/1346-8138.14489
  50. Elias PM. 2012. Structure and function of the stratum corneum extracellular matrix. J. Invest. Dermatol. 132: 2131-2133. https://doi.org/10.1038/jid.2012.246
  51. Jensen JM, Schutze S, Forl M, Kronke M, Proksch E. 1999. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J. Clin. Invest. 104: 1761-1770. https://doi.org/10.1172/JCI5307
  52. Lund P, Tramonti A, De Biase D. 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 38: 1091-1125. https://doi.org/10.1111/1574-6976.12076
  53. Costa FG, Horswill AR. 2022. Overcoming pH defenses on the skin to establish infections. PLoS Pathog. 18: e1010512.
  54. Sun JL, Zhang SK, Chen JY, Han BZ. 2012. Metabolic profiling of Staphylococcus aureus cultivated under aerobic and anaerobic conditions with (1)H NMR-based nontargeted analysis. Can. J. Microbiol. 58: 709-718. https://doi.org/10.1139/w2012-046
  55. Mallory JC, Crudden G, Johnson BL, Mo C, Pierson CA, Bard M, et al. 2005. Dap1p, a heme-binding protein that regulates the cytochrome P450 protein Erg11p/Cyp51p in Saccharomyces cerevisiae. Mol. Cell Biol. 25: 1669-1679. https://doi.org/10.1128/MCB.25.5.1669-1679.2005