Acknowledgement
This study was supported by the National Key Research and Development Program of China (No. 2020YFD0900300), the Natural Science Foundation of China (No. 32073023), the Key Project of Scientific & Technological Innovation of Hubei Province (2018ABA101), and Wuhan Science and Technology Project (No. 2019020701011480). We also thank Sichuan Agriculture University and Yangtze River Fisheries Research Institute of Chinese Academy of Fishery Sciences for donating E. ictaluri strains.
References
- Klesius PH, Shoemaker CA. 1999. Development and Use of Modified Live Edwardsiella ictaluri Vaccine against Enteric Septicemia of Catfish, pp. 523-537. Advances in Veterinary Medicine, Ed. Elsevier.
- Zhang Y, Arias CR. 2007. Identification and characterization of an intervening sequence within the 23S ribosomal RNA genes of Edwardsiella ictaluri. Syst. Appl. Microbiol. 30: 93-101. https://doi.org/10.1016/j.syapm.2006.04.004
- Wagner BA, Wise DJ, Khoo LH, Terhune JS. 2002. The epidemiology of bacterial diseases in food-size channel catfish. J. Aquat. Anim. Health 14: 263-272. https://doi.org/10.1577/1548-8667(2002)014<0263:TEOBDI>2.0.CO;2
- da Costa A, de Abreu D, Torres Chideroli R, Espirito Santo K, Dib Goncalves D, Di Santis G, et al. 2021. Interspecies transmission of Edwardsiella ictaluri in Brazilian catfish (Pseudoplatystoma corruscans) from exotic invasive fish species. Dis. Aquat. Organ 145: 197-208. https://doi.org/10.3354/dao03610
- Liu JY, Li AH, Zhou DR, Wen ZR, Ye XP. 2010. Isolation and characterization of Edwardsiella ictaluri strains as pathogens from diseased yellow catfish Pelteobagrus fulvidraco (Richardson) cultured in China: E. ictaluri isolates from diseased yellow catfish. Aquac. Res 41: 1835-1844. https://doi.org/10.1111/j.1365-2109.2010.02571.x
- Zhou X, Zhang G-R, Ji W, Shi Z-C, Ma X-F, Luo Z-L, et al. 2021. The dynamic immune response of yellow catfish (Pelteobagrus fulvidraco) infected with Edwardsiella ictaluri presenting the inflammation process. Front. Immunol. 12: 625928.
- Soto E, Griffin M, Arauz M, Riofrio A, Martinez A, Cabrejos ME. 2012. Edwardsiella ictaluri as the causative agent of mortality in cultured Nile Tilapia. J. Aquat. Anim. Health 24: 81-90. https://doi.org/10.1080/08997659.2012.675931
- Keskin O, Secer SU, Izgur M, Turkyilmaz S, Mkakosya RS. 2004. Edwardsiella ictaluri infection in rainbow trout (Oncorhynchus mykiss). Turkish J. Vet. Anim. Sci. 28: 649-653.
- Takeuchi H, Hiratsuka M, Hori K, Oinuma H, Umino Y, Nakano D, et al. 2021. Environmental factors affecting Edwardsiella ictaluri -induced mortality of riverine ayu, Plecoglossus altivelis (Temminck & Schlegel). J. Fish Dis. 44: 1065-1074. https://doi.org/10.1111/jfd.13368
- Hawke JP, Kent M, Rogge M, Baumgartner W, Wiles J, Shelley J, et al. 2013. Edwardsiellosis caused by Edwardsiella ictaluri in laboratory populations of Zebrafish Danio rerio. J. Aquat. Anim. Health 25: 171-183. https://doi.org/10.1080/08997659.2013.782226
- Heuer Ole E, Kruse H, Grave K, Collignon P, Karunasagar I, Angulo Frederick J. 2009. Human health consequences of use of antimicrobial agents in aquaculture. Clin. Infect. Dis. 49: 1248-1253. https://doi.org/10.1086/605667
- Li J, Mo Z, Li G, Xiao P, Huang J. 2015. Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 43: 175-180. https://doi.org/10.1016/j.fsi.2014.12.018
- Goldstein BP. 2014. Resistance to rifampicin: a review. J. Antibiot. 67: 625-630. https://doi.org/10.1038/ja.2014.107
- Pridgeon JW, Russo R, Shoemaker CA, Klesius PH. 2010. Identification of in vitro upregulated genes in a modified live vaccine strain of Edwardsiella ictaluri compared to a virulent parent strain. Comp. Immunol. Microbiol. Infect. Dis. 33: e31-e40. https://doi.org/10.1016/j.cimid.2009.10.009
- Olivares-Fuster O, Arias CR. 2011. Development and characterization of rifampicin-resistant mutants from high virulent strains of Flavobacterium columnare: Rifampicin-resistant mutants of Flavobacterium columnare. J. Fish Dis. 34: 385-394. https://doi.org/10.1111/j.1365-2761.2011.01253.x
- Schurig GG, Roop RM, Bagchi T, Boyle S, Buhrman D, Sriranganathan N. 1991. Biological properties of RB51; a stable rough strain of Brucella abortus. Vet. Microbiol. 28: 171-188. https://doi.org/10.1016/0378-1135(91)90091-S
- Qi Q, Preston GM, MacLean RC. 2014. Linking system-wide ompacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa. mBio 5: e01562-01514.
- LaFrentz BR, LaPatra SE, Call DR, Cain KD. 2008. Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine 26: 5582-5589. https://doi.org/10.1016/j.vaccine.2008.07.083
- Sun Y, Liu C-s, Sun L. 2010. Isolation and analysis of the vaccine potential of an attenuated Edwardsiella tarda strain. Vaccine 28: 6344-6350. https://doi.org/10.1016/j.vaccine.2010.06.101
- Pridgeon JW, Klesius PH. 2011. Development and efficacy of novobiocin and rifampicin-resistant Aeromonas hydrophila as novel vaccines in channel catfish and Nile tilapia. Vaccine 29: 7896-7904. https://doi.org/10.1016/j.vaccine.2011.08.082
- Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8: 260-271. https://doi.org/10.1038/nrmicro2319
- Hao B, Mo Z, Xiao P, Pan H, Lan X, Li G. 2013. Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl. Microbiol. Biotechnol. 97: 2575-2585. https://doi.org/10.1007/s00253-012-4372-x
- Leung K, Wong L, Low K, Sin Y. 1997. Mini-Tn5 induced growth- and protease-deficient mutants of Aeromonas hydrophila as live vaccines for blue gourami, Trichogaster trichopterus (Pallas). Aquaculture 158: 11-22. https://doi.org/10.1016/S0044-8486(97)00185-3
- Villain-Guillot P, Bastide L, Gualtieri M, Leonetti J-P. 2007. Progress in targeting bacterial transcription. Drug Discov. Today 12: 200-208. https://doi.org/10.1016/j.drudis.2007.01.005
- Zaw MT, Emran NA, Lin Z. 2018. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J. Infect. Public Health 11: 605-610. https://doi.org/10.1016/j.jiph.2018.04.005
- Kurepina N, Chudaev M, Kreiswirth BN, Nikiforov V, Mustaev A. 2022. Mutations compensating for the fitness cost of rifampicin resistance in Escherichia coli exert pleiotropic effect on RNA polymerase catalysis. Nucleic Acids Res. 50: 5739-5756. https://doi.org/10.1093/nar/gkac406
- McCallum N, Karauzum H, Getzmann R, Bischoff M, Majcherczyk P, Berger-Bachi B, et al. 2006. In vivo survival of teicoplanin-resistant Staphylococcus aureus and fitness cost of teicoplanin resistance. Antimicrob. Agents Chemother. 50: 2352-2360. https://doi.org/10.1128/AAC.00073-06
- Han F, Pu S, Wang F, Meng J, Ge B. 2009. Fitness cost of macrolide resistance in Campylobacter jejuni. Int. J. Antimicrob. Agents 34: 462-466. https://doi.org/10.1016/j.ijantimicag.2009.06.019
- Pridgeon JW, Klesius PH. 2011. Development and efficacy of a novobiocin-resistant Streptococcus iniae as a novel vaccine in Nile tilapia (Oreochromis niloticus). Vaccine 29: 5986-5993. https://doi.org/10.1016/j.vaccine.2011.06.036
- Sander P, Springer B, Prammananan T, Sturmfels A, Kappler M, Pletschette M, et al. 2002. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46: 1204-1211. https://doi.org/10.1128/AAC.46.5.1204-1211.2002
- Hamilton MA, Russo RC, Thurston RV. 1977. Trimmed spearman-karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11: 714-719. https://doi.org/10.1021/es60130a004
- Dias MKR. 2016. Lethal dose and clinical signs of Aeromonas hydrophila in Arapaima gigas (Arapaimidae), the giant fish from Amazon. Vet. Microbiol. 188: 12-15. https://doi.org/10.1016/j.vetmic.2016.04.001
- Pridgeon JW, Klesius PH. 2011. Development of a novobiocin-resistant Edwardsiella ictaluri as a novel vaccine in channel catfish (Ictalurus punctatus). Vaccine 29: 5631-5637. https://doi.org/10.1016/j.vaccine.2011.06.016
- Lin B, Chen S, Cao Z, Lin Y, Mo D, Zhang H, et al. 2007. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: Striking similarities and obvious differences with mammals. Mol. Immunol. 44: 295-301. https://doi.org/10.1016/j.molimm.2006.03.001
- O'Toole R, von Hofsten J, Rosqvist R, Olsson P-E, Wolf-Watz H. 2004. Visualisation of Zebrafish infection by GFP-labelled Vibrio anguillarum. Microb. Pathog. 37: 41-46. https://doi.org/10.1016/j.micpath.2004.03.001
- Pressley ME, Phelan PE, Eckhard Witten P, Mellon MT, Kim CH. 2005. Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev. Compar. Immunol. 29: 501-513. https://doi.org/10.1016/j.dci.2004.10.007
- Hohn C, Lee S-R, Pinchuk LM, Petrie-Hanson L. 2009. Zebrafish kidney phagocytes utilize macropinocytosis and Ca2+-dependent endocytic mechanisms. PLoS One 4: e4314.
- Petrie-Hanson L, Romano CL, Mackey RB, Khosravi P, Hohn CM, Boyle CR. 2007. Evaluation of zebrafish Danio rerio as a model for Enteric Septicemia of Catfish (ESC). J. Aquat. Anim. Health 19: 151-158. https://doi.org/10.1577/H06-026.1
- Santander J, Xin W, Yang Z, Curtiss R. 2010. The Aspartate-semialdehyde dehydrogenase of Edwardsiella ictaluri and its useas balanced-lethal system in fish vaccinology. PLoS One 5: e15944.
- Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95: 3140-3145. https://doi.org/10.1073/pnas.95.6.3140
- Maiden MCJ. 2006. Multilocus sequence typing of bacteria. Ann. Rev. Microbiol. 60: 561-588. https://doi.org/10.1146/annurev.micro.59.030804.121325
- Pridgeon JW, Yildirim-Aksoy M, Klesius PH, Srivastava KK, Reddy PG. 2012. Attenuation of a virulent Aeromonas hydrophila with novobiocin and pathogenic characterization of the novobiocin-resistant strain. J. Appl. Microbiol. 113: 1319-1328. https://doi.org/10.1111/j.1365-2672.2012.05430.x
- Pridgeon JW, Klesius PH, Yildirim-Aksoy M. 2013. Attempt to develop live attenuated bacterial vaccines by selecting resistance to gossypol, proflavine hemisulfate, novobiocin, or ciprofloxacin. Vaccine 31: 2222-2230. https://doi.org/10.1016/j.vaccine.2013.03.004
- Heckman TI, Shahin K, Henderson EE, Griffin MJ, Soto E. 2022. Development and efficacy of Streptococcus iniae live-attenuated vaccines in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 121: 152-162. https://doi.org/10.1016/j.fsi.2021.12.043
- Pridgeon JW, Li Y, Yildirim-Aksoy M, Song L, Klesius PH, Srivastava KK, et al. 2013. Fitness cost, gyrB mutation, and absence of phosphotransferase system fructose specific IIABC component in novobiocin-resistant Streptococcus iniae vaccine strain ISNO. Vet. Microbiol. 165: 384-391. https://doi.org/10.1016/j.vetmic.2013.04.001
- Klein JL, Brown TJ, French GL. 2001. Rifampin Resistance in Mycobacterium kansasii is associated with rpoB mutations. Antimicrob. Agents Chemother. 45: 3056-3058. https://doi.org/10.1128/AAC.45.11.3056-3058.2001
- Jin DJ, Gross CA. 1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202: 45-58. https://doi.org/10.1016/0022-2836(88)90517-7
- Choi J, Shin D, Yoon H, Kim J, Lee C-R, Kim M, et al. 2010. Salmonella pathogenicity island 2 expression negatively controlled by EIIANtr-SsrB interaction is required for Salmonella virulence. Proc. Natl. Acad. Sci.USA 107: 20506-20511. https://doi.org/10.1073/pnas.1000759107
- Tan YP, Zheng J, Tung SL, Rosenshine I, Leung KY. 2005. Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151: 2301-2313. https://doi.org/10.1099/mic.0.28005-0
- Wang X, Wang Q, Xiao J, Liu Q, Wu H, Xu L, et al. 2009. Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol. 27: 469-477. https://doi.org/10.1016/j.fsi.2009.06.013
- Liu Y, Zhao L, Yang M, Yin K, Zhou X, Leung KY, et al. 2017. Transcriptomic dissection of the horizontally acquired response regulator EsrB reveals its global regulatory roles in the physiological adaptation and activation of T3SS and the cognate effector repertoire in Edwardsiella piscicida during infection toward turbot. Virulence 8: 1355-1377. https://doi.org/10.1080/21505594.2017.1323157
- Otten EG, Werner E, Crespillo-Casado A, Boyle KB, Dharamdasani V, Pathe C, et al. 2021. Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature 594: 111-116. https://doi.org/10.1038/s41586-021-03566-4
- Xu T, Guo Y, Qi X. 2019. Ubiquitination-mediated inflammasome activation during bacterial infection. Int. J. Mol. Sci. 20: 2110.
- Berglund J, Gjondrekaj R, Verney E, Maupin-Furlow JA, Edelmann MJ. 2020. Modification of the host ubiquitome by bacterial enzymes. Microbiol. Res. 235: 126429.
- Wan M, Wang X, Huang C, Xu D, Wang Z, Zhou Y, et al. 2019. A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat. Microbiol. 4: 1282-1293. https://doi.org/10.1038/s41564-019-0454-1
- Hensel M. 2000. Salmonella pathogenicity island 2. Mol. Microbiol. 36: 1015-1023. https://doi.org/10.1046/j.1365-2958.2000.01935.x
- Haraga A, Miller SI. 2003. A Salmonella enterica serovar typhimurium translocated leucine-rich repeat effector protein inhibits NF-kappa B-dependent gene expression. Infect. Immun. 71: 4052-4058. https://doi.org/10.1128/IAI.71.7.4052-4058.2003
- Kidwai AS, Mushamiri I, Niemann GS, Brown RN, Adkins JN, Heffron F. 2013. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model. PLoS One 8: e70753.
- Halici S, Zenk SF, Jantsch J, Hensel M. 2008. Functional analysis of the Salmonella pathogenicity island 2-mediated inhibition of antigen presentation in dendritic cells. Infect. Immun. 76: 4924-4933. https://doi.org/10.1128/IAI.00531-08
- Bhavsar AP, Brown NF, Stoepel J, Wiermer M, Martin DDO, Hsu KJ, et al. 2013. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity. PLoS Pathog. 9: e1003518.
- Quezada CM, Hicks SW, Galan JE, Stebbins CE. 2009. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl. Acad. Sci.USA 106: 4864-4869. https://doi.org/10.1073/pnas.0811058106
- Hicks Stuart W, Charron G, Hang Howard C, Galan Jorge E. 2011. Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation. Cell Host Microbe 10: 9-20. https://doi.org/10.1016/j.chom.2011.06.003
- Wedlich-Soldner R, Li R. 2004. Closing the loops: new insights into the role and regulation of actin during cell polarization. Exp. Cell Res. 301: 8-15. https://doi.org/10.1016/j.yexcr.2004.08.011
- Walch P, Selkrig J, Knodler LA, Rettel M, Stein F, Fernandez K, et al. 2021. Global mapping of Salmonella enterica-host proteinprotein interactions during infection. Cell Host Microbe 29: 1316-1332.e1312. https://doi.org/10.1016/j.chom.2021.06.004
- Miao EA, Brittnacher M, Haraga A, Jeng RL, Welch MD, Miller SI. 2003. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton: Salmonella intracellular effectors. Mol. Microbiol. 48: 401-415. https://doi.org/10.1046/j.1365-2958.2003.t01-1-03456.x
- Navarro-Garcia F, Serapio-Palacios A, Ugalde-Silva P, Tapia-Pastrana G, Chavez-Duenas L. 2013. Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia coli pathotypes. BioMed Res. Int. 2013: 1-22. https://doi.org/10.1155/2013/374395
- Stevens JM, Galyov EE, Stevens MP. 2006. Actin-dependent movement of bacterial pathogens. Nat. Rev. Microbiol. 4: 91-101. https://doi.org/10.1038/nrmicro1320
- Lu Q, Li S, Shao F. 2015. Sweet talk: Protein glycosylation in bacterial interaction with the host. Trends Microbiol. 23: 630-641. https://doi.org/10.1016/j.tim.2015.07.003
- Tra VN, Dube DH. 2014. Glycans in pathogenic bacteria--potential for targeted covalent therapeutics and imaging agents. Chem. Commun. (Camb) 50: 4659-4673. https://doi.org/10.1039/C4CC00660G
- Valguarnera E, Kinsella RL, Feldman MF. 2016. Sugar and spice make bacteria not nice: protein glycosylation and its influence in pathogenesis. J. Mol. Biol. 428: 3206-3220. https://doi.org/10.1016/j.jmb.2016.04.013
- Jia L, Sha S, Yang S, Taj A, Ma Y. 2021. Effect of protein O-mannosyltransferase (MSMEG_5447) on M. smegmatis and its survival in macrophages. Front. Microbiol. 12: 657726.
- Liu C-F, Tonini L, Malaga W, Beau M, Stella A, Bouyssie D, et al. 2013. Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis. Proc. Natil. Acad. Sci. USA 110: 6560-6565. https://doi.org/10.1073/pnas.1219704110
- Cain JA, Dale AL, Niewold P, Klare WP, Man L, White MY, et al. 2019. Proteomics reveals multiple phenotypes associated with N-linked glycosylation in Campylobacter jejuni. Mol. Cell. Proteomics 18: 715-734. https://doi.org/10.1074/mcp.RA118.001199