DOI QR코드

DOI QR Code

The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture

  • Shuyi Wang (State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences) ;
  • Jingwen Hao (State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences) ;
  • Jicheng Yang (Dalian Ocean University) ;
  • Qianqian Zhang (State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences) ;
  • Aihua Li (State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences)
  • Received : 2022.10.11
  • Accepted : 2022.12.02
  • Published : 2023.02.28

Abstract

The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.

Keywords

Acknowledgement

This study was supported by the National Key Research and Development Program of China (No. 2020YFD0900300), the Natural Science Foundation of China (No. 32073023), the Key Project of Scientific & Technological Innovation of Hubei Province (2018ABA101), and Wuhan Science and Technology Project (No. 2019020701011480). We also thank Sichuan Agriculture University and Yangtze River Fisheries Research Institute of Chinese Academy of Fishery Sciences for donating E. ictaluri strains.

References

  1. Klesius PH, Shoemaker CA. 1999. Development and Use of Modified Live Edwardsiella ictaluri Vaccine against Enteric Septicemia of Catfish, pp. 523-537. Advances in Veterinary Medicine, Ed. Elsevier. 
  2. Zhang Y, Arias CR. 2007. Identification and characterization of an intervening sequence within the 23S ribosomal RNA genes of Edwardsiella ictaluri. Syst. Appl. Microbiol. 30: 93-101.  https://doi.org/10.1016/j.syapm.2006.04.004
  3. Wagner BA, Wise DJ, Khoo LH, Terhune JS. 2002. The epidemiology of bacterial diseases in food-size channel catfish. J. Aquat. Anim. Health 14: 263-272.  https://doi.org/10.1577/1548-8667(2002)014<0263:TEOBDI>2.0.CO;2
  4. da Costa A, de Abreu D, Torres Chideroli R, Espirito Santo K, Dib Goncalves D, Di Santis G, et al. 2021. Interspecies transmission of Edwardsiella ictaluri in Brazilian catfish (Pseudoplatystoma corruscans) from exotic invasive fish species. Dis. Aquat. Organ 145: 197-208.  https://doi.org/10.3354/dao03610
  5. Liu JY, Li AH, Zhou DR, Wen ZR, Ye XP. 2010. Isolation and characterization of Edwardsiella ictaluri strains as pathogens from diseased yellow catfish Pelteobagrus fulvidraco (Richardson) cultured in China: E. ictaluri isolates from diseased yellow catfish. Aquac. Res 41: 1835-1844.  https://doi.org/10.1111/j.1365-2109.2010.02571.x
  6. Zhou X, Zhang G-R, Ji W, Shi Z-C, Ma X-F, Luo Z-L, et al. 2021. The dynamic immune response of yellow catfish (Pelteobagrus fulvidraco) infected with Edwardsiella ictaluri presenting the inflammation process. Front. Immunol. 12: 625928. 
  7. Soto E, Griffin M, Arauz M, Riofrio A, Martinez A, Cabrejos ME. 2012. Edwardsiella ictaluri as the causative agent of mortality in cultured Nile Tilapia. J. Aquat. Anim. Health 24: 81-90.  https://doi.org/10.1080/08997659.2012.675931
  8. Keskin O, Secer SU, Izgur M, Turkyilmaz S, Mkakosya RS. 2004. Edwardsiella ictaluri infection in rainbow trout (Oncorhynchus mykiss). Turkish J. Vet. Anim. Sci. 28: 649-653. 
  9. Takeuchi H, Hiratsuka M, Hori K, Oinuma H, Umino Y, Nakano D, et al. 2021. Environmental factors affecting Edwardsiella ictaluri -induced mortality of riverine ayu, Plecoglossus altivelis (Temminck & Schlegel). J. Fish Dis. 44: 1065-1074.  https://doi.org/10.1111/jfd.13368
  10. Hawke JP, Kent M, Rogge M, Baumgartner W, Wiles J, Shelley J, et al. 2013. Edwardsiellosis caused by Edwardsiella ictaluri in laboratory populations of Zebrafish Danio rerio. J. Aquat. Anim. Health 25: 171-183.  https://doi.org/10.1080/08997659.2013.782226
  11. Heuer Ole E, Kruse H, Grave K, Collignon P, Karunasagar I, Angulo Frederick J. 2009. Human health consequences of use of antimicrobial agents in aquaculture. Clin. Infect. Dis. 49: 1248-1253.  https://doi.org/10.1086/605667
  12. Li J, Mo Z, Li G, Xiao P, Huang J. 2015. Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 43: 175-180.  https://doi.org/10.1016/j.fsi.2014.12.018
  13. Goldstein BP. 2014. Resistance to rifampicin: a review. J. Antibiot. 67: 625-630.  https://doi.org/10.1038/ja.2014.107
  14. Pridgeon JW, Russo R, Shoemaker CA, Klesius PH. 2010. Identification of in vitro upregulated genes in a modified live vaccine strain of Edwardsiella ictaluri compared to a virulent parent strain. Comp. Immunol. Microbiol. Infect. Dis. 33: e31-e40.  https://doi.org/10.1016/j.cimid.2009.10.009
  15. Olivares-Fuster O, Arias CR. 2011. Development and characterization of rifampicin-resistant mutants from high virulent strains of Flavobacterium columnare: Rifampicin-resistant mutants of Flavobacterium columnare. J. Fish Dis. 34: 385-394.  https://doi.org/10.1111/j.1365-2761.2011.01253.x
  16. Schurig GG, Roop RM, Bagchi T, Boyle S, Buhrman D, Sriranganathan N. 1991. Biological properties of RB51; a stable rough strain of Brucella abortus. Vet. Microbiol. 28: 171-188.  https://doi.org/10.1016/0378-1135(91)90091-S
  17. Qi Q, Preston GM, MacLean RC. 2014. Linking system-wide ompacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa. mBio 5: e01562-01514. 
  18. LaFrentz BR, LaPatra SE, Call DR, Cain KD. 2008. Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine 26: 5582-5589.  https://doi.org/10.1016/j.vaccine.2008.07.083
  19. Sun Y, Liu C-s, Sun L. 2010. Isolation and analysis of the vaccine potential of an attenuated Edwardsiella tarda strain. Vaccine 28: 6344-6350.  https://doi.org/10.1016/j.vaccine.2010.06.101
  20. Pridgeon JW, Klesius PH. 2011. Development and efficacy of novobiocin and rifampicin-resistant Aeromonas hydrophila as novel vaccines in channel catfish and Nile tilapia. Vaccine 29: 7896-7904.  https://doi.org/10.1016/j.vaccine.2011.08.082
  21. Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8: 260-271.  https://doi.org/10.1038/nrmicro2319
  22. Hao B, Mo Z, Xiao P, Pan H, Lan X, Li G. 2013. Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl. Microbiol. Biotechnol. 97: 2575-2585.  https://doi.org/10.1007/s00253-012-4372-x
  23. Leung K, Wong L, Low K, Sin Y. 1997. Mini-Tn5 induced growth- and protease-deficient mutants of Aeromonas hydrophila as live vaccines for blue gourami, Trichogaster trichopterus (Pallas). Aquaculture 158: 11-22.  https://doi.org/10.1016/S0044-8486(97)00185-3
  24. Villain-Guillot P, Bastide L, Gualtieri M, Leonetti J-P. 2007. Progress in targeting bacterial transcription. Drug Discov. Today 12: 200-208.  https://doi.org/10.1016/j.drudis.2007.01.005
  25. Zaw MT, Emran NA, Lin Z. 2018. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J. Infect. Public Health 11: 605-610.  https://doi.org/10.1016/j.jiph.2018.04.005
  26. Kurepina N, Chudaev M, Kreiswirth BN, Nikiforov V, Mustaev A. 2022. Mutations compensating for the fitness cost of rifampicin resistance in Escherichia coli exert pleiotropic effect on RNA polymerase catalysis. Nucleic Acids Res. 50: 5739-5756.  https://doi.org/10.1093/nar/gkac406
  27. McCallum N, Karauzum H, Getzmann R, Bischoff M, Majcherczyk P, Berger-Bachi B, et al. 2006. In vivo survival of teicoplanin-resistant Staphylococcus aureus and fitness cost of teicoplanin resistance. Antimicrob. Agents Chemother. 50: 2352-2360.  https://doi.org/10.1128/AAC.00073-06
  28. Han F, Pu S, Wang F, Meng J, Ge B. 2009. Fitness cost of macrolide resistance in Campylobacter jejuni. Int. J. Antimicrob. Agents 34: 462-466.  https://doi.org/10.1016/j.ijantimicag.2009.06.019
  29. Pridgeon JW, Klesius PH. 2011. Development and efficacy of a novobiocin-resistant Streptococcus iniae as a novel vaccine in Nile tilapia (Oreochromis niloticus). Vaccine 29: 5986-5993.  https://doi.org/10.1016/j.vaccine.2011.06.036
  30. Sander P, Springer B, Prammananan T, Sturmfels A, Kappler M, Pletschette M, et al. 2002. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46: 1204-1211.  https://doi.org/10.1128/AAC.46.5.1204-1211.2002
  31. Hamilton MA, Russo RC, Thurston RV. 1977. Trimmed spearman-karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11: 714-719.  https://doi.org/10.1021/es60130a004
  32. Dias MKR. 2016. Lethal dose and clinical signs of Aeromonas hydrophila in Arapaima gigas (Arapaimidae), the giant fish from Amazon. Vet. Microbiol. 188: 12-15.  https://doi.org/10.1016/j.vetmic.2016.04.001
  33. Pridgeon JW, Klesius PH. 2011. Development of a novobiocin-resistant Edwardsiella ictaluri as a novel vaccine in channel catfish (Ictalurus punctatus). Vaccine 29: 5631-5637.  https://doi.org/10.1016/j.vaccine.2011.06.016
  34. Lin B, Chen S, Cao Z, Lin Y, Mo D, Zhang H, et al. 2007. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: Striking similarities and obvious differences with mammals. Mol. Immunol. 44: 295-301.  https://doi.org/10.1016/j.molimm.2006.03.001
  35. O'Toole R, von Hofsten J, Rosqvist R, Olsson P-E, Wolf-Watz H. 2004. Visualisation of Zebrafish infection by GFP-labelled Vibrio anguillarum. Microb. Pathog. 37: 41-46.  https://doi.org/10.1016/j.micpath.2004.03.001
  36. Pressley ME, Phelan PE, Eckhard Witten P, Mellon MT, Kim CH. 2005. Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev. Compar. Immunol. 29: 501-513.  https://doi.org/10.1016/j.dci.2004.10.007
  37. Hohn C, Lee S-R, Pinchuk LM, Petrie-Hanson L. 2009. Zebrafish kidney phagocytes utilize macropinocytosis and Ca2+-dependent endocytic mechanisms. PLoS One 4: e4314. 
  38. Petrie-Hanson L, Romano CL, Mackey RB, Khosravi P, Hohn CM, Boyle CR. 2007. Evaluation of zebrafish Danio rerio as a model for Enteric Septicemia of Catfish (ESC). J. Aquat. Anim. Health 19: 151-158.  https://doi.org/10.1577/H06-026.1
  39. Santander J, Xin W, Yang Z, Curtiss R. 2010. The Aspartate-semialdehyde dehydrogenase of Edwardsiella ictaluri and its useas balanced-lethal system in fish vaccinology. PLoS One 5: e15944. 
  40. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95: 3140-3145.  https://doi.org/10.1073/pnas.95.6.3140
  41. Maiden MCJ. 2006. Multilocus sequence typing of bacteria. Ann. Rev. Microbiol. 60: 561-588.  https://doi.org/10.1146/annurev.micro.59.030804.121325
  42. Pridgeon JW, Yildirim-Aksoy M, Klesius PH, Srivastava KK, Reddy PG. 2012. Attenuation of a virulent Aeromonas hydrophila with novobiocin and pathogenic characterization of the novobiocin-resistant strain. J. Appl. Microbiol. 113: 1319-1328.  https://doi.org/10.1111/j.1365-2672.2012.05430.x
  43. Pridgeon JW, Klesius PH, Yildirim-Aksoy M. 2013. Attempt to develop live attenuated bacterial vaccines by selecting resistance to gossypol, proflavine hemisulfate, novobiocin, or ciprofloxacin. Vaccine 31: 2222-2230.  https://doi.org/10.1016/j.vaccine.2013.03.004
  44. Heckman TI, Shahin K, Henderson EE, Griffin MJ, Soto E. 2022. Development and efficacy of Streptococcus iniae live-attenuated vaccines in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 121: 152-162.  https://doi.org/10.1016/j.fsi.2021.12.043
  45. Pridgeon JW, Li Y, Yildirim-Aksoy M, Song L, Klesius PH, Srivastava KK, et al. 2013. Fitness cost, gyrB mutation, and absence of phosphotransferase system fructose specific IIABC component in novobiocin-resistant Streptococcus iniae vaccine strain ISNO. Vet. Microbiol. 165: 384-391.  https://doi.org/10.1016/j.vetmic.2013.04.001
  46. Klein JL, Brown TJ, French GL. 2001. Rifampin Resistance in Mycobacterium kansasii is associated with rpoB mutations. Antimicrob. Agents Chemother. 45: 3056-3058.  https://doi.org/10.1128/AAC.45.11.3056-3058.2001
  47. Jin DJ, Gross CA. 1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202: 45-58.  https://doi.org/10.1016/0022-2836(88)90517-7
  48. Choi J, Shin D, Yoon H, Kim J, Lee C-R, Kim M, et al. 2010. Salmonella pathogenicity island 2 expression negatively controlled by EIIANtr-SsrB interaction is required for Salmonella virulence. Proc. Natl. Acad. Sci.USA 107: 20506-20511.  https://doi.org/10.1073/pnas.1000759107
  49. Tan YP, Zheng J, Tung SL, Rosenshine I, Leung KY. 2005. Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151: 2301-2313.  https://doi.org/10.1099/mic.0.28005-0
  50. Wang X, Wang Q, Xiao J, Liu Q, Wu H, Xu L, et al. 2009. Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol. 27: 469-477.  https://doi.org/10.1016/j.fsi.2009.06.013
  51. Liu Y, Zhao L, Yang M, Yin K, Zhou X, Leung KY, et al. 2017. Transcriptomic dissection of the horizontally acquired response regulator EsrB reveals its global regulatory roles in the physiological adaptation and activation of T3SS and the cognate effector repertoire in Edwardsiella piscicida during infection toward turbot. Virulence 8: 1355-1377.  https://doi.org/10.1080/21505594.2017.1323157
  52. Otten EG, Werner E, Crespillo-Casado A, Boyle KB, Dharamdasani V, Pathe C, et al. 2021. Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature 594: 111-116.  https://doi.org/10.1038/s41586-021-03566-4
  53. Xu T, Guo Y, Qi X. 2019. Ubiquitination-mediated inflammasome activation during bacterial infection. Int. J. Mol. Sci. 20: 2110. 
  54. Berglund J, Gjondrekaj R, Verney E, Maupin-Furlow JA, Edelmann MJ. 2020. Modification of the host ubiquitome by bacterial enzymes. Microbiol. Res. 235: 126429. 
  55. Wan M, Wang X, Huang C, Xu D, Wang Z, Zhou Y, et al. 2019. A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat. Microbiol. 4: 1282-1293.  https://doi.org/10.1038/s41564-019-0454-1
  56. Hensel M. 2000. Salmonella pathogenicity island 2. Mol. Microbiol. 36: 1015-1023.  https://doi.org/10.1046/j.1365-2958.2000.01935.x
  57. Haraga A, Miller SI. 2003. A Salmonella enterica serovar typhimurium translocated leucine-rich repeat effector protein inhibits NF-kappa B-dependent gene expression. Infect. Immun. 71: 4052-4058.  https://doi.org/10.1128/IAI.71.7.4052-4058.2003
  58. Kidwai AS, Mushamiri I, Niemann GS, Brown RN, Adkins JN, Heffron F. 2013. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model. PLoS One 8: e70753. 
  59. Halici S, Zenk SF, Jantsch J, Hensel M. 2008. Functional analysis of the Salmonella pathogenicity island 2-mediated inhibition of antigen presentation in dendritic cells. Infect. Immun. 76: 4924-4933.  https://doi.org/10.1128/IAI.00531-08
  60. Bhavsar AP, Brown NF, Stoepel J, Wiermer M, Martin DDO, Hsu KJ, et al. 2013. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity. PLoS Pathog. 9: e1003518. 
  61. Quezada CM, Hicks SW, Galan JE, Stebbins CE. 2009. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl. Acad. Sci.USA 106: 4864-4869.  https://doi.org/10.1073/pnas.0811058106
  62. Hicks Stuart W, Charron G, Hang Howard C, Galan Jorge E. 2011. Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation. Cell Host Microbe 10: 9-20.  https://doi.org/10.1016/j.chom.2011.06.003
  63. Wedlich-Soldner R, Li R. 2004. Closing the loops: new insights into the role and regulation of actin during cell polarization. Exp. Cell Res. 301: 8-15.  https://doi.org/10.1016/j.yexcr.2004.08.011
  64. Walch P, Selkrig J, Knodler LA, Rettel M, Stein F, Fernandez K, et al. 2021. Global mapping of Salmonella enterica-host proteinprotein interactions during infection. Cell Host Microbe 29: 1316-1332.e1312.  https://doi.org/10.1016/j.chom.2021.06.004
  65. Miao EA, Brittnacher M, Haraga A, Jeng RL, Welch MD, Miller SI. 2003. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton: Salmonella intracellular effectors. Mol. Microbiol. 48: 401-415.  https://doi.org/10.1046/j.1365-2958.2003.t01-1-03456.x
  66. Navarro-Garcia F, Serapio-Palacios A, Ugalde-Silva P, Tapia-Pastrana G, Chavez-Duenas L. 2013. Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia coli pathotypes. BioMed Res. Int. 2013: 1-22.  https://doi.org/10.1155/2013/374395
  67. Stevens JM, Galyov EE, Stevens MP. 2006. Actin-dependent movement of bacterial pathogens. Nat. Rev. Microbiol. 4: 91-101.  https://doi.org/10.1038/nrmicro1320
  68. Lu Q, Li S, Shao F. 2015. Sweet talk: Protein glycosylation in bacterial interaction with the host. Trends Microbiol. 23: 630-641.  https://doi.org/10.1016/j.tim.2015.07.003
  69. Tra VN, Dube DH. 2014. Glycans in pathogenic bacteria--potential for targeted covalent therapeutics and imaging agents. Chem. Commun. (Camb) 50: 4659-4673.  https://doi.org/10.1039/C4CC00660G
  70. Valguarnera E, Kinsella RL, Feldman MF. 2016. Sugar and spice make bacteria not nice: protein glycosylation and its influence in pathogenesis. J. Mol. Biol. 428: 3206-3220.  https://doi.org/10.1016/j.jmb.2016.04.013
  71. Jia L, Sha S, Yang S, Taj A, Ma Y. 2021. Effect of protein O-mannosyltransferase (MSMEG_5447) on M. smegmatis and its survival in macrophages. Front. Microbiol. 12: 657726. 
  72. Liu C-F, Tonini L, Malaga W, Beau M, Stella A, Bouyssie D, et al. 2013. Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis. Proc. Natil. Acad. Sci. USA 110: 6560-6565.  https://doi.org/10.1073/pnas.1219704110
  73. Cain JA, Dale AL, Niewold P, Klare WP, Man L, White MY, et al. 2019. Proteomics reveals multiple phenotypes associated with N-linked glycosylation in Campylobacter jejuni. Mol. Cell. Proteomics 18: 715-734. https://doi.org/10.1074/mcp.RA118.001199