DOI QR코드

DOI QR Code

A Study on Optimizing Unit Process Ring Pattern Design for High Voltage Power Semiconductor Device Development

고전압 전력반도체 소자 개발을 위한 단위공정 링패턴설계 최적화에 대한 연구

  • Received : 2022.11.14
  • Accepted : 2022.12.24
  • Published : 2023.03.01

Abstract

Recently, the global demands for high voltage power semiconductors are increasing across various industrial fields. The use of electric cars with high safety and convenience is becoming practical, and IGBT modules of 3.3 kV and 1.2 kA or higher are used for electric locomotives. Delicate design and advanced process technology are required, and research on the optimization of high-voltage IGBT parts is urgently needed in the industry. In this study, we attempted to design a simulation process through TCAD (technology computer-aid design) software to optimize the process conditions of the fielding process among the core unit processes for an especial high yield voltage. As well, the prior circuit technology design and a ring pattern with a large number of ring formation structures outside the wafer similar to the chip structure of other companies were constructed for 3.3 kV NPT-IGBT through a unit process demonstration experiment. The ring pattern was designed with 21 rings and the width of the ring was 6.6 ㎛. By changing the spacing between patterns from 17.4 ㎛ to 35.4 ㎛, it was possible to optimize the spacing from 19.2 ㎛ to 18.4 ㎛.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(NRF-2022R1F1A107156611)입니다.

References

  1. E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 23, 7 (2010).
  2. H. W. Chun and I. S. Yang, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 206 (2013).
  3. S. C. Kim, and E. D. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 15, 15 (2002).
  4. E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 210 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.4.210]
  5. E. G. Kang, Inst. Korean Electr. Electron. Eng., 14, 199 (2010).
  6. E. S. Jung, S. S. Kyoung, H. Chung, and E. G. Jang, J. Electr. Eng. Technol., 9, 1995 (2014). [DOI: https://doi.org/10.5370/jeet.2014.9.6.1995]
  7. F. J. Niedernostheide, H. J. Schulze, T. Laska, and A. Philippou, IET Power Electron., 11, 646 (2018). [DOI: https://doi.org/10.1049/iet-pel.2017.0499]
  8. T. J. Nam, E. S. Jung, H. S. Jung, S. J. Kim, and E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 165 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.3.165]
  9. B. H. Kim, J. Y. Park, K. H. Park, H. K. Shin, G. J. Kim, and S.M. Chang, J. Nanosci. Nanotechnol., 17, 5606 (2017). [DOI:https://doi.org/10.1166/jnn.2017.14181]
  10. V. Crisafulli, IGBT Technologys and Applications Overview, https://www.onsemi.com/pub/Collateral/TND6245-D.PDF_(2021).
  11. J. H. Kim, Master's thesis, Department of Electrical and Electronic Engineering, p. 45, KAIST, Daejeon (2016).
  12. B. H. Kim, H. K. Shin, J. Y. Park, and S. M. Chang, Trans. Electr. Electron. Mater., 20, 7 (2019). [DOI: https://doi.org/10.1007/s42341-018-00087-2]
  13. M. C. Shin, H. A. Kim, B. S. Ahn, H. F. Cui, S. Y. Kin, and E. G. Kang, J. Nanosci. Nanotechnol., 19, 1720 (2019). [DOI:https://doi.org/10.1166/jnn.2019.16208]
  14. M. C. Shin, H. S. Chung, B. S. Ahn, H. F. Cui, S. Y. Kim, and E. G. Kang, J. Nanosci. Nanotechnol., 19, 1670 (2019). [DOI:https://doi.org/10.1166/jnn.2019.16207]