DOI QR코드

DOI QR Code

서태평양 마젤란해산군 OSM-XX 해저산 망간각의 광물학적, 지화학적 특성과 고해양 고환경 복원 연구

Revealing the Paleo-ocean Environment of OSM-XX in the Western Pacific Magellan Seamount with Mineralogical and Geochemical Properties of Ferromanganese Crust

  • 박진섭 (부산대학교 자연과학대학 해양학과) ;
  • 양기호 (부산대학교 자연과학대학 해양학과)
  • Jinsub Park (Department of Oceanography, College of Natural Sciences, Pusan National University) ;
  • Kiho Yang (Department of Oceanography, College of Natural Sciences, Pusan National University)
  • 투고 : 2023.01.02
  • 심사 : 2023.02.13
  • 발행 : 2023.02.28

초록

망간각의 지화학적, 광물학적 특성의 변화는 인근 환경 변화를 반영한다. 따라서 서태평양 마젤란해산군 OSM-XX의 망간각에 대한 특성 파악과 고해양 복원 연구를 위하여 지화학적, 광물학적 분석을 각각 micro X-ray fluorescence (μ-XRF) 과 X-ray diffraction (XRD)를 이용하여 실시하였다. OSM-XX의 망간각은 인산염화 여부 및 구조에 의해 인산염화 작용을 받은 부분(L4-L5), 인산염화 작용을 받지 않은 치밀한 부분(L3), 인산염화 작용을 받지 않은 다공성 부분(L1-L2)의 세 부분으로 구분되었다. 철망간 산화광물 층에서는 모두 버나다이트 피크가 확인되었으며, 인산염화 작용을 받은 부분은 carbonate fluorapatite(CFA)의 존재와 높은 Ca, P의 특성을 나타내었다. 인산염화 작용을 받지 않은 치밀한 부분은 높은 Mn, Ni, Co를 나타내었고, 인산염화 작용을 받지 않은 다공성 부분은 높은 Fe값과 detritus quartz, feldspar가 확인되었다. OSM-XX의 망간각이 성장하는동안 나타난 특성의 변화는 인근 해양환경의 변화를 반영하였다. 약 51.87 Ma의 연대를 나타내는 망간각의 인산염 퇴적체는 약 36-32 Ma의 전지구적 인산염화 작용에 의해 형성된 것으로 보이며, 이는 당시의 상승된 해수면 높이와 낮은 해수온을 지시한다. 또한, 치밀한 구조에서의 높은 Mn, Ni, Co, Mn/Fe 비는 강화된 산소최소층과 환원환경을 지시하며, 다공성 구조에서의 높은 Fe와 낮은 Mn/Fe 비는 약화된 산소최소층과 산화환경을 지시한다. 이는 마이오세-올리고세 경계의 Mi-1 빙하기가 끝난 후 환경변화를 반영하였다. 9 Ma부터 이어진 한랭화의 결과로 인한 저층류와 산소최소층의 강화에 의해 망간각 최외각의 Mn/Fe 비와 Co/Mn 비가 미세하게 증가하였지만, 6 Ma부터 태평양에 발생한 탄산염 용해율의 감소로 성장속도의 감소를 야기하였다.

Variations in geochemical and mineralogical properties of the ferromanganese(Fe-Mn) crust reflect environmental changes. In the present study, geochemical and mineralogical analyses, including micro X-ray fluorescence and X-ray diffraction, were utilized to reconstruct the paleo-ocean environment of western Pacific Magellan seamount cluster. Samples of the Fe-Mn crust were collected using an epibenthic sledge from the open seamount XX (151° 51.12' 7.2" E and 16° 8.16' 9.6" N, 1557 meters below sea level) in the Western Pacific Magellan Seamount. According to the structure and phosphating status, the Fe-Mn crust of the OSM-XX can be divided into the following: phosphatizated (L4-L5), massive non-phosphatizated (L3), and porous non-phosphatizated (L1-L2) portions. All ferromanganese layers contain vernadite, and owing to the presence of carbonate fluorapatite (CFA), the phosphatizated portion (L4-L5) is rich in Ca and P. The massive non-phosphatizated section (L3) contains high Mn, Ni, and Co, whereas the porous non-phosphatizated portion (L1-L2), which comprises detrital quartz and feldspar, is rich in Fe. Variations in properties of the Fe-Mn crust from the OSM-XX reflect changes in the nearby marine environment. The formation of this crust started at approximately 51.87 Ma, and precipitation of the CFA during the global phosphatization event that occurred at approximately 36-32 Ma highlights an elevated sea level and low temperature during the associated period. The high Mn, Ni, and Co concentrations and elevated Mn/Fe ratios of samples from the massive phosphatizated portion indicate that the oxygen minimum zone (OMZ) was enhanced, and reducing conditions prevailed during the crust formation. The high Fe and low Mn/Fe ratios in the porous portion indicate a weak OMZ and dominantly oxidizing conditions. These data reflect environmental changes following the end of the Mi-1 glacial period in the Miocene-Oligocene boundary. Subsequently, Mn/Fe and Co/Mn ratios increased slightly in the outermost part of Fe-Mn crust because of the enhanced bottom current and OMZ associated with the continued cooling from approximately 9 Ma. However, the reduced carbonate dissolution rate in the Pacific Ocean from approximately 6 Ma decreased the growth rate of the Fe-Mn crust.

키워드

과제정보

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음

참고문헌

  1. Duncan, R.A. and Clague, D.A. (1985). Pacific plate motion recorded by linear volcanic chains. In The ocean basins and margins (pp. 89-121). Springer, Boston, MA. doi: 10.1007/978-1-4613-2351-8_3
  2. Eriksen, C.C. (1991). Observations of amplified flows atop a large seamount. Journal of Geophysical Research: Oceans, v.96(C8), p.15227-15236. doi: 10.1029/91JC01176
  3. Eriksen, C.C. (1998). Internal wave reflection and mixing at Fieberling Guyot. Journal of Geophysical Research: Oceans, v.103(C2), p.2977-2994. doi: 10.1029/97JC03205
  4. Glasby, G.P. (2006). Manganese: predominant role of nodules and crusts. In Marine geochemistry (pp. 371-427). Springer, Berlin, Heidelberg. doi: 10.1007/3-540-32144-6_11
  5. Glasby, G.P., Ren, X., Shi, X. and Pulyaeva, I.A. (2007). Co-rich Mn crusts from the Magellan Seamount cluster: the long journey through time. Geo-Marine Letters, v.27(5), p.315-323. doi: 10.1007/s00367-007-0055-5
  6. Heath, G.R., Moore Jr, T.C. and van Andel, T.H. (1977). Carbonate accumulation and dissolution in the equatorial Pacific during the past 45 million years. In The Fate of Fossil Fuel CO2 in the Oceans (Vol. 6, pp. 627-639). Plenum Press New York, NY.
  7. Halbach, P. and Puteanus, D. (1984). The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas. Earth and Planetary Science Letters, v.68(1), p.73-87. doi: 10.1016/0012-821X(84)90141-9
  8. Halbach, P., Segl, M., Puteanus, D. and Mangini, A. (1983). Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. Nature, v.304(5928), p.716-719. doi: 10.1038/304716a0
  9. Halbach, P., Sattler, C.D., Teichmann, F. and Wahsner, M. (1989). Cobalt-rich and platinum-bearing manganese crust deposits on seamounts: nature, formation, and metal potential. Marine Mining, v.8(1), p.23-39.
  10. Haq, B.U., Hardenbol, J.A.N. and Vail, P.R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, v.235(4793), p.1156-1167. doi: 10.1126/science.235.4793.1156
  11. Hein, J.R. and Koschinsky, A. (2014). Deep-ocean ferromanganese crusts and nodules. doi: 10.1016/B978-0-08-095975-7.01111-6
  12. Hein, J.R., Mizell, K., Koschinsky, A. and Conrad, T.A. (2013). Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, v.51, p.1-14. doi: 10.1016/j.oregeorev.2012.12.001
  13. Hein, J.R., Bohrson, W.A., Schulz, M.S., Noble, M. and Clague, D.A. (1992). Variations in the fine-scale composition of a Central Pacific ferromanganese crust: Paleoceanographic implications. Paleoceanography, v.7(1), p.63-77. doi: 10.1029/91PA02936
  14. Hein, J.R., Yeh, H.W., Gunn, S.H., Sliter, W.V., Benninger, L.M. and Wang, C.H. (1993). Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits. Paleoceanography, v.8(2), p.293-311. doi: 10.1029/93PA00320
  15. Hein, J.R. (2002). Cobalt-rich ferromanganese crusts: global distribution, composition, origin and research activities. ISA Technical Study, v.2, p.36-89.
  16. Hodkinson, R.A. and Cronan, D.S. (1991). Regional and depth variability in the composition of cobalt-rich ferromanganese crusts from the SOPAC area and adjacent parts of the central equatorial Pacific. Marine Geology, v.98(2-4), p.437-447. doi: 10.1016/0025-3227(91)90115-K
  17. Hyeong, K., Kim, K., Yoo, C.M., Moon, J.W. and Kim K.H. (2008). Phosphogensis recorded in the Co-rich crusts of the northwest Pacific seamounts. Journal of the Geological Society of Korea, v.44(4), p.435-446.
  18. Hyeong, K., Kim, J., Yoo, C.M., Moon, J.W. and Seo, I. (2013). Cenozoic history of phosphogenesis recorded in the ferromanganese crusts of central and western Pacific seamounts: Implications for deepwater circulation and phosphorus budgets. Palaeogeography, Palaeoclimatology, Palaeoecology, v.392, p.293-301. doi: 10.1016%2Fj.palaeo.2013.09.012 https://doi.org/10.1016%2Fj.palaeo.2013.09.012
  19. Jeong, K., Jung, H., Kang, J., Morgan, C. and Hein, J. (2000), Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry. Marine Geology, v.162(2-4), p.541-559. doi: 10.1016/S0025-3227(99)00091-2
  20. Jones, E.J.W., BouDagher-Fadel, M.K. and Thirlwall, M.F. (2002). An investigation of seamount phosphorites in the Eastern Equatorial Atlantic. Marine Geology, v.183(1-4), p.143-162. doi: 10.1016/S0025-3227(01)00254-7
  21. Karstensen, J., Stramma, L. and Visbeck, M. (2008). Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Progress in Oceanography, v.77(4), p.331-350. doi: 10.1016/j.pocean.2007.05.009
  22. Kim, J., Hyeong, K., Jung, H.S., Moon, J.W., Kim, K.H. and Lee, L. (2006). Southward shift of the Intertropical Convergence Zone in the western Pacific during the late Tertiary: Evidence from ferromanganese crusts on seamounts west of the Marshall Islands. Paleoceanography, v.21(4). doi: 10.1029/2006PA001291
  23. Koschinsky, A. and Halbach, P. (1995). Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimica et Cosmochimica Acta, v.59(24), p.5113-5132. doi: 10.1016/0016-7037(95)00358-4
  24. Machida, S., Nakamura, K., Kogiso, T., Shimomura, R., Horinouchi, K., Okino, K. and Kato, Y. (2021). Fine-scale chemostratigraphy of cross-sectioned hydrogenous ferromanganese nodules from the western North Pacific. Island Arc, v.30(1). doi: 10.1111/iar.12395
  25. McClain, C.R. (2007). Seamounts: identity crisis or split personality?. Journal of Biogeography, v.34(12), p.2001-2008. doi: 10.1111/j.1365-2699.2007.01783.x
  26. McMurtry, G.M., VonderHaar, D.L., Eisenhauer, A., Mahoney, J.J. and Yeh, H.W. (1994). Cenozoic accumulation history of a Pacific ferromanganese crust. Earth and Planetary Science Letters, v.125(1-4), p.105-118. doi: 10.1016/0012-821X(94)90209-7
  27. Menard, H.W. (1984). Origin of guyots: the Beagle to Seabeam. Journal of Geophysical Research: Solid Earth, v.89(B13), p.11117-11123. doi: 10.1029/JB089iB13p11117
  28. Puteanus, D. and Halbach, P. (1988). Correlation of Co concentration and growth rate-A method for age determination of ferromanganese crusts. Chemical Geology, v.69(1-2), p.73-85. https://doi.org/10.1016/0009-2541(88)90159-3
  29. Robinson, R.S., Etourneau, J., Martinez, P.M. and Schneider, R. (2014). Expansion of pelagic denitrification during early Pleistocene cooling. Earth and Planetary Science Letters, v.389, p.52-61. doi: 10.1016/j.epsl.2013.12.022
  30. Segl, M., Mangini, A., Bonani, G., Hofmann, H.J., Nessi, M., Suter, M., ... and Beer, J. (1984). 10Be-dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation. Nature, v.309(5968), p.540-543. doi: 10.1038/309540a0
  31. Segl, M., Mangini, A., Beer, J., Bonani, G., Suter, M. and Wolfli, W. (1989). Growth rate variations of manganese nodules and crusts induced by paleoceanographic events. Paleoceanography, v.4(5), p.511-530. doi: 10.1029/PA004i005p00511
  32. Trasvina-Castro, A., De Velasco, G.G., Valle-Levinson, A., Gonzalez-Armas, R., Muhlia, A. and Cosio, M.A. (2003). Hydrographic observations of the flow in the vicinity of a shallow seamount top in the Gulf of California. Estuarine, Coastal and Shelf Science, v.57(1-2), p.149-162. doi: 10.1016/S0272-7714(02)00338-4
  33. Verlaan, P.A., Cronan, D.S. and Morgan, C.L. (2004). A comparative analysis of compositional variations in and between marine ferromanganese nodules and crusts in the South Pacific and their environmental controls. Progress in Oceanography, v.63(3), p.125-158. doi: 10.1016/j.pocean.2004.11.001
  34. Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, v.292(5517), p.686-693. doi: 10.1126/science.1059412