• Title/Summary/Keyword: ferromanganese crust

Search Result 7, Processing Time 0.02 seconds

Mineralogy and Internal Structures of a Ferromanganese Crust from a Seamount, Central Pacific (중앙태평양 해저산지역 망간각의 광물 및 내부구조)

  • 강정국
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.168-178
    • /
    • 1987
  • A study on the mineralogy and internal features have been carried out on a sample of ferromanganese crust from a Central Pacific seamout. The distribution of manganese mineral vernadite($\delta$-MnO$\sub$2/)in the different layers indicates typical hydrogenous origin under a continuous change of growth conditions during crustal firmation. Various internal structures are discerned within the crust which may be attributed to different growth conditions. The growth structure changes and the distinct break in the formation of the crust at about 2 depth are assumed to be the results of Miocene to mid-Pleistocene global palaeoceanographic events.

  • PDF

Revealing the Paleo-ocean Environment of OSM-XX in the Western Pacific Magellan Seamount with Mineralogical and Geochemical Properties of Ferromanganese Crust (서태평양 마젤란해산군 OSM-XX 해저산 망간각의 광물학적, 지화학적 특성과 고해양 고환경 복원 연구)

  • Jinsub Park;Kiho Yang
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.55-63
    • /
    • 2023
  • Variations in geochemical and mineralogical properties of the ferromanganese(Fe-Mn) crust reflect environmental changes. In the present study, geochemical and mineralogical analyses, including micro X-ray fluorescence and X-ray diffraction, were utilized to reconstruct the paleo-ocean environment of western Pacific Magellan seamount cluster. Samples of the Fe-Mn crust were collected using an epibenthic sledge from the open seamount XX (151° 51.12' 7.2" E and 16° 8.16' 9.6" N, 1557 meters below sea level) in the Western Pacific Magellan Seamount. According to the structure and phosphating status, the Fe-Mn crust of the OSM-XX can be divided into the following: phosphatizated (L4-L5), massive non-phosphatizated (L3), and porous non-phosphatizated (L1-L2) portions. All ferromanganese layers contain vernadite, and owing to the presence of carbonate fluorapatite (CFA), the phosphatizated portion (L4-L5) is rich in Ca and P. The massive non-phosphatizated section (L3) contains high Mn, Ni, and Co, whereas the porous non-phosphatizated portion (L1-L2), which comprises detrital quartz and feldspar, is rich in Fe. Variations in properties of the Fe-Mn crust from the OSM-XX reflect changes in the nearby marine environment. The formation of this crust started at approximately 51.87 Ma, and precipitation of the CFA during the global phosphatization event that occurred at approximately 36-32 Ma highlights an elevated sea level and low temperature during the associated period. The high Mn, Ni, and Co concentrations and elevated Mn/Fe ratios of samples from the massive phosphatizated portion indicate that the oxygen minimum zone (OMZ) was enhanced, and reducing conditions prevailed during the crust formation. The high Fe and low Mn/Fe ratios in the porous portion indicate a weak OMZ and dominantly oxidizing conditions. These data reflect environmental changes following the end of the Mi-1 glacial period in the Miocene-Oligocene boundary. Subsequently, Mn/Fe and Co/Mn ratios increased slightly in the outermost part of Fe-Mn crust because of the enhanced bottom current and OMZ associated with the continued cooling from approximately 9 Ma. However, the reduced carbonate dissolution rate in the Pacific Ocean from approximately 6 Ma decreased the growth rate of the Fe-Mn crust.

Geophysical and Geological Exploration of Cobalt-rich Ferromanganese Crusts on a Seamount in the Western Pacific (서태평양 해저산 고코발트 망간각 자원평가를 위한 광역 탐사 방안)

  • Kim, Jonguk;Ko, Young-Tak;Hyeong, Kiseong;Moon, Jai-Woon
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.569-580
    • /
    • 2013
  • Co-rich ferromanganese crusts (Fe-Mn crusts) distributed on the seamounts in the western Pacific are potential economic resources for cobalt, nickel, platinum, and other rare metals in the future. Regulations for prospecting and exploration of Fe-Mn crusts in the Area, which enables the process to obtain an exclusive exploration right for blocks of the fixed size, were enacted recently by the International Seabed Authority, which led to public attention on its potential for commercial development. Evaluation and selection of a mining site can be established based on abundance and grade of Fe-Mn crusts in the site as well as topography that should be smooth enough for mining efficiency. Therefore, acquisition of shipboard echo-sounding and acoustic backscatter data are prerequisite to select potential mine sites in addition to visual and sampling operations. Acoustic backscatter data can be used to locate crust-covered areas in a regional scale with the understanding of acoustic properties of crust through its correlation with visual and sampling data. KIOST had collected the topographic and geologic data to assess the resources potential for Fe-Mn crusts in the west Pacific region from 1994 to 2001. However, they could not obtain acoustic backscatter data that is crucial for the selection of prospective mining sites. Therefore, additional exploration surveys are required to carry out side scan sonar mapping combined with seafloor observation and sampling to decide the blocks for application of an exclusive exploration right.

Operational Improvement of Hemire ROV for Deep-sea Survey and Application to Exploration of Ferromanganese Crusts of Western Pacific Seamount (해미래의 심해탐사 운용기법 개선 및 서태평양 해저산 망간각 탐사에 적용)

  • Baek, Hyuk;Park, Jin-Yeong;Shim, Hyungwon;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.287-295
    • /
    • 2018
  • This paper presents the results of an exploration of the ferromanganese crusts of Western Pacific Seamount registered by the Korean government. This area has been surveyed with a deep-sea camera and crust samples have been acquired by deep-sea dredging since 2013. On October 18-19, 2017, a united research team from KIOST and KRISO explored two blocks, OSM11 and OSM07, on the seamount using Hemire ROV. A precise survey was conducted on the ferromanganese crusts and sediments covering the slope/top of OSM11 and the middle flat area of OSM07. Rock samples were collected with precise positioning, and HD videos were recorded for 7 hours. This paper discusses the technical issues of this exploration in terms of (1) how to deal with an emergency situation during an electric power blackout, (2) the improvement of the thruster power by adding cooling plugs to the housings of the thruster amplifiers, (3) the relative motion of the depressor by changing the fixing method of the cable terminator, which affects the service life of the cable, (4) a sampling technique for the steep slope of the seamount, (5) integrated navigation under a USBL blackout, and (6) a 3-dimensional image mosaic for visualizing the distribution state of the crusts.

Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment (서태평양 해저산의 망간각 자원평가를 위한 해저지형 특성 분석)

  • Joo, Jongmin;Kim, Jonguk;Ko, Youngtak;Kim, Seung-Sep;Son, Juwon;Pak, Sang Joon;Ham, Dong-Jin;Son, Seung Kyu
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.121-134
    • /
    • 2016
  • We characterize the spatial distribution of Cobalt-rich ferromanganese crusts covering the summit and slopes of a seamount in the western Pacific, using acoustic backscatter from multibeam echo sounders (MBES) and seafloor video observation. Based on multibeam bathymetric data, we identify that ~70% of the summit area of this flattopped seamount has slope gradients less than $5^{\circ}$. The histogram of the backscatter intensity data shows a bi-modal distribution, indicating significant variations in seabed hardness. On the one hand, visual inspection of the seafloor using deep-sea camera data exhibits that the steep slope areas with high backscatter are mainly covered by manganese crusts. On the other hand, the visual analyses for the summit reveal that the summit areas with relatively low backscatter are covered by sediments. The other summit areas, however, exhibit high acoustic reflectivity due to coexistence of manganese crusts and sediments. Comparison between seafloor video images and acoustic backscatter intensity suggests that the central summit has relatively flat topography and low backscatter intensity resulting from unconsolidated sediments. In addition, the rim of the summit and the slopes are of high acoustic reflectivity because of manganese crusts and/or bedrock outcrops with little sediments. Therefore, we find a strong correlation between the acoustic backscatter data acquired from sea-surface multibeam survey and the spatial distribution of sediments and manganese crusts. We propose that analyzing acoustic backscatter can be one of practical methods to select optimal minable areas of the ferromanganese crusts from seamounts for future mining.

Application of Scanning Electron Microscopy (SEM) for Biotically Induced Microstructure Observation in Sedimentary Sample of Natural Condition (주사전자현미경 분석을 활용한 자연환경 퇴적시료의 생물기원구조 관찰)

  • Park, Hanbeom;Kim, Jinwook
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.165-173
    • /
    • 2020
  • The activity of living microorganism directly or indirectly affects to the biomineralization in sediments and rocks that display the unique biotic structure. Minerals in the biotic structures showed unique properties and bypass the thermodynamic and kinetic barriers. Therefore, investigations on the biotically induced microstructure is essential to identify the new mineral formation mechanism by analyzing crystal structures and morphology at a nano-scale. The significant implication as well as advantages of using scanning electron microscopy to characterize the biotic structures were discussed in this paper for the examples of hydrothermal vent area microbial mat and deep-sea ferromanganese crust sample.

Chemical Speciations of Elements in the Fe-Mn Crusts by Sequential Extraction (단계별 추출법을 이용한 망간각 구성 원소의 존재 형태)

  • Kim, Jong-Uk;Moon, Jai-Woon;Chi, Sang-Bum;Ko, Young-Tak;Lee, Hyun-Bok
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.231-243
    • /
    • 2004
  • Sequential extraction was carried out on twenty two subsamples of three ferromanganese crusts from three seamounts (Lemkein, Lomilik, and Litakpooki) near the Marshall Islands in the western Pacific. The extraction was designed to fractionate Fe-Mn crust forming elements into low defined groups: (1) exchangeable and carbornate, (2) Mn-oxide, (3) Fe-oxyhyd.oxide, and (4) residual fraction. X-ray diffraction result shows that target material were well removed by each extraction step except for CFA in phosphatized crusts generation. According to chemical analysis of each leachate, most of elements in the Fe-Mn crusts are bound with two major phases. Mn, Ba, Co, Ni, Zn, (Fe, Sr, Cu, and V) are strongly bounded with Mn-oxide $({\delta}-MnO_2)$ phase, whereas Fe, Ti, Zr, Mo, Pb, Al, Cu,(V, P, and Zn) show chemical affinity with Fe-oxyhydroxide phase. This result indicates that significant amount of Al, Ti, and Zr can not be explained by detrital origin. Ca, Mg, K, and Sr mainly occur as exchangeable elements and/or carbonate phase. Outermost layer 1 and inner layer 2 which are both young crusts generations are similar in chemical speciations of elements. However, some of Fe-oxyhydroxide bounded elements (Pb, Y, Mo, Ba, Al, and V) in phosphatized innermost layer 3 are released during phosphatization and incorporated into phosphate (Pb, Y, Mo, and Ba) or Mn-oxide phase (Al and V). Our sequential extraction results reveal that chemical speciations of elements in the hydrogenetic crusts are more or less different from interelemental relationship calculated by statistical method based on bulk chemistry.