Acknowledgement
본 논문은 순천대학교 교연비 사업에 의하여 연구되었음
References
- Presidential Commission on Carbon Neutrality and Green Growth, "2030 Nationally Determined Contributions (NDC)", Presidential Commission on Carbon Neutrality and Green Growth, 2021. Retrieved from https://2050cnc.go.kr/base/contents/view?contentsNo=11&menuLevel=2&menuNo=13.
- H. K. Lee, Y. M. Woo, and M. J. Lee, "The needs for R&D of ammonia combustion technology for carbon neutrality part I background and economic feasibility of expanding the su pply of fuel ammonia", Journal of the Korean Society of Combustion, Vol. 26, No. 1, 2021, pp. 59-83, doi: https://doi.org/10.15231/jksc.2021.26.1.059.
- C. K. Law and O. C. Kwon, "Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation", In ternational Journal of Hydrogen Energy, Vol. 29, No. 8, 2004, pp. 867-879, doi: https://doi.org/10.1016/j.ijhydene.2003.09.012.
- H. Kobayashi, A. Hayakawa, K. D. K. A. Somarathne, and E. C. Okafor, "Science and technology of ammonia combustion", Proceedings of the Combustion Institute, Vol. 37, No. 1, 2019, pp. 109-133, doi: https://doi.org/10.1016/j.proci.2018.09.029.
- A. T. Wijayanta, T. Oda, C. W. Purnomo, T. Kashiwagi, and M. Aziz, "Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review", International Journal of Hydrogen Energy, Vol. 44, No. 29, 2019, pp. 15026-15044, doi: https://doi.org/10.1016/j.ijhydene.2019.04.112.
- A. Valera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, "Ammonia for power", Progress in Energy and Combustion Science, Vol. 69, 2018, pp. 63-102, doi:https://doi.org/10.1016/j.pecs.2018.07.001.
- J. Li, H. Huang, N. Kobayashi, Z. He, and Y. Nagai, "Study on using hydrogen and ammonia as fuels: combustion characteristics and NOx formation", International Journal of Energy Research, Vol. 38, No. 9, 2014, pp. 1214-1223,doi: https://doi.org/10.1002/er.3141.
- H. Xiao, A. Valera-Medina, and P. J. Bowen, "Modeling combustion of ammonia/hydrogen fuel blends under gas turbine conditions", Energy & Fuels, Vol. 31, No. 8, 2017, pp. 8631-8642, doi: https://doi.org/10.1021/acs.energyfuels.7b00709.
- Y. J. Ahn, J. W. Ku, S. Choi, J. Koo, and O. C. Kwon, "Design of a combustion chamber for studying the combustion characteristics of counterflow flames at elevated pressure", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 3, 2017, pp.315-321, doi: https://doi.org/10.7316/KHNES.2017.28.3.315.
- H. Xiao, M. Howard, A. Valera-Medina, S. Dooley, and P. J. Bowen, "Study on reduced chemical mechanisms of ammonia/methane combustion under gas turbine conditions", Energy & Fuels, Vol. 30, No. 10, 2016, pp. 8701-8710, doi:https://doi.org/10.1021/acs.energyfuels.6b01556.
- H. Xiao, A. Valera-Medina, and P. J. Bowen, "Study on premixed combustion characteristics of co-firing ammonia/methane fuels", Energy, Vol. 140, Pt. 1, 2017, pp. 125-135, doi: https://doi.org/10.1016/j.energy.2017.08.077.
- H. Xiao, A. Valera-Medina, R. Marsh, and P. J. Bowen, "Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions", Fuel, Vol. 196, 2017, pp. 344-351, doi: https://doi.org/10.1016/j.fuel.2017.01.095.
- A. Valera-Medina, R. Marsh, J. Runyon, D. Pugh, P. Beasley, T. Hughes, and P. Bowen, "Ammonia-methane combustion in tangential swirl burners for gas turbine power generation", Applied Energy, Vol. 185, Pt. 2, 2017, pp. 1362-1371, doi:https://doi.org/10.1016/j.apenergy.2016.02.073.
- E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, and H. Kobayashi, "Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism", Combustion and Flame, Vol. 204, 2019, pp. 162-175, doi:https://doi.org/10.1016/j.combustflame.2019.03.008.
- S. Liu, C. Zou, Y. Song, S. Cheng, and Q. Lin, "Experimental and numerical study of laminar flame speeds of CH4/NH3 mixtures under oxyfuel combustion", Energy, Vol. 175, 2019, pp. 250-258, doi: https://doi.org/10.1016/j.energy.2019.03.040.
- J. Li, H. Huang, N. Kobayashi, Z. He, Y. Osaka, and T. Zeng, "Numerical study on effect of oxygen content in combustion air on ammonia combustion", Energy, Vol. 93, Pt. 2, 2015, pp. 2053-2068, doi: https://doi.org/10.1016/j.energy.2015.10.060.
- S. K. Choi, E. S. Cho, and S. H. Chung, "Quantification of extinction mechanism in counterflow premixed flames", Journal of Mechanical Science and Technology, Vol. 28, 2014, pp. 3863-3871, doi: https://doi.org/10.1007/s12206-014-0850-7.
- J. Sato, "Effects of Lewis number on extinction behavior of premixed flames in a stagnation flow", Symposium (International) on Combustion, Vol. 19, No. 1, 1982, pp. 1541-1548, doi: https://doi.org/10.1016/S00820784(82)803317.
- C. K. Law, "Combustion Physics", Cambridge University Press, UK, 2006, pp. 410-434, doi: https://doi.org/10.1017/CBO9780511754517.
- C. K. Law, "Dynamics of stretched flames", Symposium (International) on Combustion, Vol. 22, No. 1, 1989, pp. 1381-1402, doi: https://doi.org/10.1016/S00820784(89)801493.
- S. Ishizuka and C. K. Law, "An experimental study on extin ction and stability of stretched premixed flames", Symposium (International) on Combustion, Vol. 19, No. 1, 1982, pp. 327-335, doi: https://doi.org/10.1016/S00820784(82)80204X.
- R. J. Kee, J. A. Miller, G. H. Evans, and G. DixonLewis, "A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames", Symposium (International) on Combustion, Vol. 22, No. 1, 1989, pp.1479-1494, doi: https://doi.org/10.1016/S00820784(89)801584.
- A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. RupLey, "OPPDIF: a fortran program for computing opposedflow diffusion flames (SAND-96-8243)", Sandia National Lab Technical Report, 1997, doi: https://doi.org/10.2172/568983.
- X. Li, L. Jia, T. Onishi, P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta, "Study on stretch extinction limits of CH4/CO2 versus high temperature O2/CO2 counter-flow non-premixed flames", Combustion and Flame, Vol. 161, No. 6, 2014, pp. 1526-1536, doi: https://doi.org/10.1016/j.combustflame.2013.12.004.
- S. Colson, Y. Hirano, A. Hayakawa, T. Kudo, H. Kobayashi, C. Galizzi, and D. Escudie, "Experimental and numerical study of NH3/CH4 counterflow premixed and non-premixed flames for various NH3 mixing ratios", Combustion Science and Technology, Vol. 193, No. 16, 2021, pp. 2872-2889, doi:https://doi.org/10.1080/00102202.2020.1763326.
- G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr, V. V. Lissianski, and Z. Qin," GRIMech 3.0 detailed mechanism", 2023. Retrieved from http://combustion.berkeley.edu/grimech/.
- University of California San Diego, "The San Diego Mechanis: Chemical-Kinetic Mechanisms for Combustion Applications", University of California San Diego, 2014. Retrieved from http://combustion.ucsd.edu/,2014.
- E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, and H. Kobayashi, "Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames", Combustion and Flame, Vol. 187, 2018, pp. 185-198, doi: https://doi.org/10.1016/j.combustflame.2017.09.002.
- Z. Tian, Y. Li, L. Zhang, P. Glarborg, and F. Qi, "An experim ental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure", Combustion and Flame, Vol. 156, No. 7, 2009, pp. 1413-1426, doi: https://doi.org/10.1016/j.combustflame.2009.03.005.
- A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, and H. Kobayashi, "Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures", Fuel, Vol. 159, 2015, pp. 98-106, doi: https://doi.org/10.1016/j.fuel.2015.06.070.
- S. H. Chung, J. S. Kim, and C. K. Law, "Extinction of interacting premixed flames: theory and experimental comparisons", Symposium (International) on Combustion, Vol. 21, No. 1, 1988, pp. 1845-1851, doi: https://doi.org/10.1016/S0082-0784(88)804193.
- K. Sim, K. Lee, S. I. Keel, and J. Park, "Downstream interaction between SNG - air premixed flames", Fuel, Vol. 210, 2017, pp. 545-556, doi: https://doi.org/10.1016/j.fuel.2017.09.013.
- Y. Kang, K. M. Lee, and J. Park, "Mutually interacting SNG-air premixed flames", Fuel, Vol. 285, 2021, pp. 119065, doi: https://doi.org/10.1016/j.fuel.2020.119065.
- J. S. Ha, J. Park, T. M. Vu, O. B. Kwon, J. H. Yun, and S. I. Keel, "Effect of flame stretch in downstream Interaction between premixed syngasair flames", International Journal of Hydrogen Energy, Vol. 36, No. 20, 2011, pp. 13181-13193, doi https://doi.org/10.1016/j.ijhydene.2011.07.042.
- T. H. Kim, J. Park, O. Fujita, O. B. Kwon, and J. H. Park, "Downstream interaction between stretched premixed syngas-air flames", Fuel, Vol. 104, 2013, pp. 739-748, doi:https://doi.org/10.1016/j.fuel.2012.07.038.
- T. K. Kim, J. Park, S. H. Oh, O. B. Kwon, S. H. Baek, and S. Ko, "Important role of chemical interaction on flame extinction in downstream interaction between stretched premixed H2-air and CO-air flames", International Journal of Hydrogen Energy, Vol. 38, No. 15, 2013, pp. 6537-6551, doi:https://doi.org/10.1016/j.ijhydene.2013.03.009.
- W. E. Wilson Jr and R. M. Fristrom, "Radical in flames", APL Technical Digest, 1963, Vol. 2, No. 6, pp. 27. Retrieved from https://www.jhuapl.edu/Content/techdigest/pdf/APLV02N06/APL-0206Wilson.pdf.
- J. Park, O. B. Kwon, E. J. Lee, J. H. Yun, and S. I. Keel, "A study on chemical effecta through preferential diffusion of H2 and H in CH4-H2 counterflow diffusion flames", Transactions of the Korean Society of Mechanical Engineers B, Vol. 31, No. 12, 2007, pp. 1009-1016, doi: https://doi.org/10.3795/KSME-B.2007.31.12.1009.