DOI QR코드

DOI QR Code

Numerical Study on the NH3/CH4 Symmetric Premixed Counterflow Flames - Part I Characteristics of Extinction Behavior

암모니아/메탄 예혼합 대향류 대칭화염에 관한 수치해석적 연구 - Part I 소화거동의 특성

  • EUNSEO JIN (School of Mechanical and Aerospace Engineering/Center for Aerospace Engineering Research) ;
  • KEEMAN LEE (School of Mechanical and Aerospace Engineering/Center for Aerospace Engineering Research)
  • 진은서 (국립순천대학교 기계우주항공공학부/우주항공연구센터) ;
  • 이기만 (국립순천대학교 기계우주항공공학부/우주항공연구센터)
  • Received : 2023.01.12
  • Accepted : 2023.02.20
  • Published : 2023.02.28

Abstract

Experimental data conducted by Colson et al. and numerical data conducted in this study were compared through counterflow flames to understand of the characteristic of basic flame about mixture of ammonia/methane. In order to use the suitable numerical mechanism, the validation was performed using total four mechanisms and the Okafor's mechanism showed satisfactory experimental results. The extinction boundary of the stability map could be explained through the effective Lewis number and the trend of LeD. The extinction behavior of the flame was different under the lean and rich symmetric conditions and it was investigated by the major variables, global strain rate (ag) and mole fraction of ammonia (ΩNH3).

Keywords

Acknowledgement

본 논문은 순천대학교 교연비 사업에 의하여 연구되었음

References

  1. Presidential Commission on Carbon Neutrality and Green Growth, "2030 Nationally Determined Contributions (NDC)", Presidential Commission on Carbon Neutrality and Green Growth, 2021. Retrieved from https://2050cnc.go.kr/base/contents/view?contentsNo=11&menuLevel=2&menuNo=13.
  2. H. K. Lee, Y. M. Woo, and M. J. Lee, "The needs for R&D of ammonia combustion technology for carbon neutrality part I background and economic feasibility of expanding the su pply of fuel ammonia", Journal of the Korean Society of Combustion, Vol. 26, No. 1, 2021, pp. 59-83, doi: https://doi.org/10.15231/jksc.2021.26.1.059.
  3. C. K. Law and O. C. Kwon, "Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation", In ternational Journal of Hydrogen Energy, Vol. 29, No. 8, 2004, pp. 867-879, doi: https://doi.org/10.1016/j.ijhydene.2003.09.012.
  4. H. Kobayashi, A. Hayakawa, K. D. K. A. Somarathne, and E. C. Okafor, "Science and technology of ammonia combustion", Proceedings of the Combustion Institute, Vol. 37, No. 1, 2019, pp. 109-133, doi: https://doi.org/10.1016/j.proci.2018.09.029.
  5. A. T. Wijayanta, T. Oda, C. W. Purnomo, T. Kashiwagi, and M. Aziz, "Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review", International Journal of Hydrogen Energy, Vol. 44, No. 29, 2019, pp. 15026-15044, doi: https://doi.org/10.1016/j.ijhydene.2019.04.112.
  6. A. Valera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, "Ammonia for power", Progress in Energy and Combustion Science, Vol. 69, 2018, pp. 63-102, doi:https://doi.org/10.1016/j.pecs.2018.07.001.
  7. J. Li, H. Huang, N. Kobayashi, Z. He, and Y. Nagai, "Study on using hydrogen and ammonia as fuels: combustion characteristics and NOx formation", International Journal of Energy Research, Vol. 38, No. 9, 2014, pp. 1214-1223,doi: https://doi.org/10.1002/er.3141.
  8. H. Xiao, A. Valera-Medina, and P. J. Bowen, "Modeling combustion of ammonia/hydrogen fuel blends under gas turbine conditions", Energy & Fuels, Vol. 31, No. 8, 2017, pp. 8631-8642, doi: https://doi.org/10.1021/acs.energyfuels.7b00709.
  9. Y. J. Ahn, J. W. Ku, S. Choi, J. Koo, and O. C. Kwon, "Design of a combustion chamber for studying the combustion characteristics of counterflow flames at elevated pressure", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 3, 2017, pp.315-321, doi: https://doi.org/10.7316/KHNES.2017.28.3.315.
  10. H. Xiao, M. Howard, A. Valera-Medina, S. Dooley, and P. J. Bowen, "Study on reduced chemical mechanisms of ammonia/methane combustion under gas turbine conditions", Energy & Fuels, Vol. 30, No. 10, 2016, pp. 8701-8710, doi:https://doi.org/10.1021/acs.energyfuels.6b01556.
  11. H. Xiao, A. Valera-Medina, and P. J. Bowen, "Study on premixed combustion characteristics of co-firing ammonia/methane fuels", Energy, Vol. 140, Pt. 1, 2017, pp. 125-135, doi: https://doi.org/10.1016/j.energy.2017.08.077.
  12. H. Xiao, A. Valera-Medina, R. Marsh, and P. J. Bowen, "Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions", Fuel, Vol. 196, 2017, pp. 344-351, doi: https://doi.org/10.1016/j.fuel.2017.01.095.
  13. A. Valera-Medina, R. Marsh, J. Runyon, D. Pugh, P. Beasley, T. Hughes, and P. Bowen, "Ammonia-methane combustion in tangential swirl burners for gas turbine power generation", Applied Energy, Vol. 185, Pt. 2, 2017, pp. 1362-1371, doi:https://doi.org/10.1016/j.apenergy.2016.02.073.
  14. E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, and H. Kobayashi, "Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism", Combustion and Flame, Vol. 204, 2019, pp. 162-175, doi:https://doi.org/10.1016/j.combustflame.2019.03.008.
  15. S. Liu, C. Zou, Y. Song, S. Cheng, and Q. Lin, "Experimental and numerical study of laminar flame speeds of CH4/NH3 mixtures under oxyfuel combustion", Energy, Vol. 175, 2019, pp. 250-258, doi: https://doi.org/10.1016/j.energy.2019.03.040.
  16. J. Li, H. Huang, N. Kobayashi, Z. He, Y. Osaka, and T. Zeng, "Numerical study on effect of oxygen content in combustion air on ammonia combustion", Energy, Vol. 93, Pt. 2, 2015, pp. 2053-2068, doi: https://doi.org/10.1016/j.energy.2015.10.060.
  17. S. K. Choi, E. S. Cho, and S. H. Chung, "Quantification of extinction mechanism in counterflow premixed flames", Journal of Mechanical Science and Technology, Vol. 28, 2014, pp. 3863-3871, doi: https://doi.org/10.1007/s12206-014-0850-7.
  18. J. Sato, "Effects of Lewis number on extinction behavior of premixed flames in a stagnation flow", Symposium (International) on Combustion, Vol. 19, No. 1, 1982, pp. 1541-1548, doi: https://doi.org/10.1016/S00820784(82)803317.
  19. C. K. Law, "Combustion Physics", Cambridge University Press, UK, 2006, pp. 410-434, doi: https://doi.org/10.1017/CBO9780511754517.
  20. C. K. Law, "Dynamics of stretched flames", Symposium (International) on Combustion, Vol. 22, No. 1, 1989, pp. 1381-1402, doi: https://doi.org/10.1016/S00820784(89)801493.
  21. S. Ishizuka and C. K. Law, "An experimental study on extin ction and stability of stretched premixed flames", Symposium (International) on Combustion, Vol. 19, No. 1, 1982, pp. 327-335, doi: https://doi.org/10.1016/S00820784(82)80204X.
  22. R. J. Kee, J. A. Miller, G. H. Evans, and G. DixonLewis, "A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames", Symposium (International) on Combustion, Vol. 22, No. 1, 1989, pp.1479-1494, doi: https://doi.org/10.1016/S00820784(89)801584.
  23. A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. RupLey, "OPPDIF: a fortran program for computing opposedflow diffusion flames (SAND-96-8243)", Sandia National Lab Technical Report, 1997, doi: https://doi.org/10.2172/568983.
  24. X. Li, L. Jia, T. Onishi, P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta, "Study on stretch extinction limits of CH4/CO2 versus high temperature O2/CO2 counter-flow non-premixed flames", Combustion and Flame, Vol. 161, No. 6, 2014, pp. 1526-1536, doi: https://doi.org/10.1016/j.combustflame.2013.12.004.
  25. S. Colson, Y. Hirano, A. Hayakawa, T. Kudo, H. Kobayashi, C. Galizzi, and D. Escudie, "Experimental and numerical study of NH3/CH4 counterflow premixed and non-premixed flames for various NH3 mixing ratios", Combustion Science and Technology, Vol. 193, No. 16, 2021, pp. 2872-2889, doi:https://doi.org/10.1080/00102202.2020.1763326.
  26. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr, V. V. Lissianski, and Z. Qin," GRIMech 3.0 detailed mechanism", 2023. Retrieved from http://combustion.berkeley.edu/grimech/.
  27. University of California San Diego, "The San Diego Mechanis: Chemical-Kinetic Mechanisms for Combustion Applications", University of California San Diego, 2014. Retrieved from http://combustion.ucsd.edu/,2014.
  28. E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, and H. Kobayashi, "Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames", Combustion and Flame, Vol. 187, 2018, pp. 185-198, doi: https://doi.org/10.1016/j.combustflame.2017.09.002.
  29. Z. Tian, Y. Li, L. Zhang, P. Glarborg, and F. Qi, "An experim ental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure", Combustion and Flame, Vol. 156, No. 7, 2009, pp. 1413-1426, doi: https://doi.org/10.1016/j.combustflame.2009.03.005.
  30. A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, and H. Kobayashi, "Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures", Fuel, Vol. 159, 2015, pp. 98-106, doi: https://doi.org/10.1016/j.fuel.2015.06.070.
  31. S. H. Chung, J. S. Kim, and C. K. Law, "Extinction of interacting premixed flames: theory and experimental comparisons", Symposium (International) on Combustion, Vol. 21, No. 1, 1988, pp. 1845-1851, doi: https://doi.org/10.1016/S0082-0784(88)804193.
  32. K. Sim, K. Lee, S. I. Keel, and J. Park, "Downstream interaction between SNG - air premixed flames", Fuel, Vol. 210, 2017, pp. 545-556, doi: https://doi.org/10.1016/j.fuel.2017.09.013.
  33. Y. Kang, K. M. Lee, and J. Park, "Mutually interacting SNG-air premixed flames", Fuel, Vol. 285, 2021, pp. 119065, doi: https://doi.org/10.1016/j.fuel.2020.119065.
  34. J. S. Ha, J. Park, T. M. Vu, O. B. Kwon, J. H. Yun, and S. I. Keel, "Effect of flame stretch in downstream Interaction between premixed syngasair flames", International Journal of Hydrogen Energy, Vol. 36, No. 20, 2011, pp. 13181-13193, doi https://doi.org/10.1016/j.ijhydene.2011.07.042.
  35. T. H. Kim, J. Park, O. Fujita, O. B. Kwon, and J. H. Park, "Downstream interaction between stretched premixed syngas-air flames", Fuel, Vol. 104, 2013, pp. 739-748, doi:https://doi.org/10.1016/j.fuel.2012.07.038. 
  36. T. K. Kim, J. Park, S. H. Oh, O. B. Kwon, S. H. Baek, and S. Ko, "Important role of chemical interaction on flame extinction in downstream interaction between stretched premixed H2-air and CO-air flames", International Journal of Hydrogen Energy, Vol. 38, No. 15, 2013, pp. 6537-6551, doi:https://doi.org/10.1016/j.ijhydene.2013.03.009.
  37. W. E. Wilson Jr and R. M. Fristrom, "Radical in flames", APL Technical Digest, 1963, Vol. 2, No. 6, pp. 27. Retrieved from https://www.jhuapl.edu/Content/techdigest/pdf/APLV02N06/APL-0206Wilson.pdf.
  38. J. Park, O. B. Kwon, E. J. Lee, J. H. Yun, and S. I. Keel, "A study on chemical effecta through preferential diffusion of H2 and H in CH4-H2 counterflow diffusion flames", Transactions of the Korean Society of Mechanical Engineers B, Vol. 31, No. 12, 2007, pp. 1009-1016, doi: https://doi.org/10.3795/KSME-B.2007.31.12.1009.