DOI QR코드

DOI QR Code

The Ways for Bi on Pt to Enhance Formic Acid Oxidation

  • Hyein Lee (Department of Chemistry, Chungnam National University) ;
  • Young Jun Kim (Department of Chemistry, Chungnam National University) ;
  • Youngku Sohn (Department of Chemistry, Chungnam National University) ;
  • Choong Kyun Rhee (Department of Chemistry, Chungnam National University)
  • Received : 2022.06.30
  • Accepted : 2022.08.13
  • Published : 2023.02.28

Abstract

This work presents a correlation between the behavior of formic acid oxidation (FAO) on various Bi-modified Pt(poly) disk electrodes and their morphologies observed on Bi-modified Pt(111) disk electrodes using electrochemical scanning tunneling microscopy (EC-STM) to understand the effects of Bi on Pt. To distinguish the FAO activities of Bi on Pt and plain Pt around Bi, additional Pt was intentionally deposited using two different routes: direct route and iodine route. In direct route, Pt was directly deposited on Bi islands and plain Pt sites around Bi islands, while in iodine route, Pt was exclusively deposited on Bi islands by protecting plain Pt sites with adsorbed iodine. Thus, a comparison of FAO performances on the two Bi-modified Pt electrodes with additional Pt (deposited in the different ways) disclosed a difference in FAO performances on plain Pt sites and Bi islands. When Bi coverage was ~0.04, the Bi deposits were scattered Bi islands enhancing FAO on Pt(poly). The additional Pt deposits using direct route increased FAO efficiency, while the ones using iodine route slightly decreased FAO current. The EC-STM observations indicated that Pt deposits around Bi islands, not on Bi islands, were responsible for the FAO current increase on Bi-modified Pt(poly). The FAO efficiency on Bi-modified Pt(poly) with a Bi coverage of ~0.25 increased by a factor of 2. However, the additional Pt deposits using the two Pt deposition routes notably decreased the FAO current. The dependency of FAO on Bi coverage was discussed in terms of electronic effect and ensemble effect.

Keywords

Acknowledgement

This work was supported by Chungnam National University (2021-0865-01).

References

  1. A. Capon and R. Parsons, J. Electroanal. Chem., 1973, 45(2), 205-231.  https://doi.org/10.1016/S0022-0728(73)80158-5
  2. C. Rice, R. I. Masel, P. Waszczuk, and T. Barnard, J. Power Sources, 2002, 111(1), 83-89.  https://doi.org/10.1016/S0378-7753(02)00271-9
  3. J. D. Lovic, A. V. Tripkovic, S. L. Gojkovic, K. D. Popovic, D. V. Tripkovic, P. Olszewski, and A. Kowal, J. Electroanal. Chem., 2005, 581, 294-302.  https://doi.org/10.1016/j.jelechem.2005.05.002
  4. X. Yu and P. G. Pickup, J. Power Sources, 2008, 182(1), 124-132.  https://doi.org/10.1016/j.jpowsour.2008.03.075
  5. W. Gao, J. A. Keith, J. Anton, and T. Jacob, J. Am. Chem. Soc., 2010, 132(51), 18377-18385.  https://doi.org/10.1021/ja1083317
  6. A. Boronat-Gonzalez, E. Herrero, and J. M. Feliu, Curr. Opin. Electrochem., 2017, 4(1), 26-31.  https://doi.org/10.1016/j.coelec.2017.06.003
  7. S. Enthaler, J. V. Langermann, and T. Schmidt, Energy Environ. Sci., 2010, 3, 1207-1217.  https://doi.org/10.1039/b907569k
  8. H.-R. M. Jhong, S. Ma, and P. J. A. Kenis, Curr. Opin. Chem. Eng., 2013, 2(2), 191-199.  https://doi.org/10.1016/j.coche.2013.03.005
  9. S. Zhang, P. Kang, and T. J. Meyer, J. Am. Chem. Soc., 2014, 136(5), 1734-1737.  https://doi.org/10.1021/ja4113885
  10. R. Kortlever, I. Peters, S. Koper, and M. T. M. Koper, ACS Catal., 2015, 5(7), 3916-3923.  https://doi.org/10.1021/acscatal.5b00602
  11. A. K. Singh, S. Singh, and A. Kumar, Catal. Sci. Technol., 2016, 6, 12-40.  https://doi.org/10.1039/C5CY01276G
  12. M. Neurock, M. Janik, and A. Wieckowski, Faraday Discuss., 2009, 140, 363-378.  https://doi.org/10.1039/B804591G
  13. W. Gao, J. A. Keith, J. Anton, T. Jacob, Dalton Trans., 2010, 39, 8450-8456.  https://doi.org/10.1039/c0dt00404a
  14. M. Osawa, K. Komatsu, G. Samjeske, T. Uchida, T. Ikeshoji, A. Cuesta, C. Gutierrez, Angew. Chem. Int. Ed., 2011, 50, 1159-1163.  https://doi.org/10.1002/anie.201004782
  15. K. Jiang, H. X. Zhang, S. Z. Zou, and W. B. Cai, Phys. Chem. Chem. Phys., 2014, 16, 20360-20376.  https://doi.org/10.1039/C4CP03151B
  16. Y. Y. Qi, J. Gao, D. J. Zhang, and C. B. Liu, RSC Adv., 2015, 5, 21170-21177.  https://doi.org/10.1039/C5RA01925G
  17. K. Zhang, H. W. Wang, C. Q. Wang, B. B. Yang, F. F. Ren, P. Yang, and Y. K. Du, Colloids Surf. A, 2015, 467, 211-215.  https://doi.org/10.1016/j.colsurfa.2014.11.059
  18. S. Uhm, H. J. Lee, Y. Kwon, and J. Lee, Angew. Chem. Int. Ed., 2008, 47(52), 10163-10166.  https://doi.org/10.1002/anie.200803466
  19. F. Matsumoto, C. Roychowdhury, F. J. Di Salvo, and H. D. Abruna, J. Electrochem. Soc., 2008, 155, B148-B154.  https://doi.org/10.1149/1.2814082
  20. N. Kristian, Y. Yan, and X. Wang, Chem. Commun., 2008, 353-355. 
  21. J. Kim and C. K. Rhee, Electrochem. Commun., 2010, 12(12), 1731-1733.  https://doi.org/10.1016/j.elecom.2010.10.008
  22. R. Wang, C. Wang, W.-B. Cai, and Y. Ding, Adv. Mater., 2010, 22(16), 1845-1848.  https://doi.org/10.1002/adma.200903548
  23. S. Zhang, Y. Shao, G. Yin, and Y. Lin, Angew. Chem. Int. Ed., 2010, 49(12), 2211-2214.  https://doi.org/10.1002/anie.200906987
  24. G. Chen, Y. Li, D. Wang, L. Zheng, G. You, C.-J. Zhong, L. Yang, F. Cai, J. Cai, and B. H. Chen, J. Power Sources, 2011, 196(20), 8323-8330.  https://doi.org/10.1016/j.jpowsour.2011.06.048
  25. J. V. Perales-Rondon, A. Ferre-Vilaplana, J. M. Feliu, and E. Herrero, J. Am. Chem. Soc., 2014, 136(38), 13110-13113.  https://doi.org/10.1021/ja505943h
  26. A. Ferre-Vilaplana, J. V. Perales-Rondon, J. M. Feliu, and E. Herrero, ACS Catal., 2015, 5, 645-654.  https://doi.org/10.1021/cs501729j
  27. T. Duan, R. Zhang, L. Ling, and B. Wang, J. Phys. Chem. C, 2016, 120(4), 2234-2246.  https://doi.org/10.1021/acs.jpcc.5b10831
  28. D. Li, F. Meng, H. Wang, X. Jiang, and Y. Zhu, Electrochim. Acta, 2016, 190, 852-861.  https://doi.org/10.1016/j.electacta.2016.01.001
  29. J. K. Yoo and C. K. Rhee, Electrochim. Acta, 2016, 216, 16-23.  https://doi.org/10.1016/j.electacta.2016.09.007
  30. J. K. Yoo, M. Choi, S. Yang, B. Shong, H.-S. Chung, Y. Sohn, and C. K. Rhee, Electrochim. Acta, 2018, 273, 307-317.  https://doi.org/10.1016/j.electacta.2018.04.071
  31. H. Lee, Y. S, and C. K. Rhee, Langmuir, 2020, 36(19), 5359-5368.  https://doi.org/10.1021/acs.langmuir.0c00755
  32. M. Choi, C.-Y. Ahn, H. Lee, J. K. Kim, S.-H. Oh, W. Hwang, S. Yang, J. Kim, O.-H. Kim, I. Choi, Y.-E. Sung, Y.-H. Cho, C. K. Rhee, and W. Shin, Appl. Catal. B., 2019, 253, 187-195.  https://doi.org/10.1016/j.apcatb.2019.04.059
  33. J. Kim and C. K. Rhee, J. Solid State Electrochem., 2013, 17(12), 3109-3114.  https://doi.org/10.1007/s10008-013-2218-9
  34. D. Zhao, Y.-H. Wang, and B.-Q. Xu, J. Phys. Chem. C, 2009, 113(49), 20903-20911.  https://doi.org/10.1021/jp904046h
  35. G.-R. Zhang, D. Zhao, Y.-Y. Feng, B. Zhang, D. S. Su, G. Liu, and B.-Q. Xu, ACS Nano, 2012, 6(3), 2226-2236.  https://doi.org/10.1021/nn204378t
  36. H. Lee, Y. J. Kim, Y. S, and C. K. Rhee, J. Electrochem. Sci. Technol., 2021, 12(3), 323-329.  https://doi.org/10.33961/jecst.2021.00178
  37. D. Zurawski, L. Rice, M. Hourani, and A. Wieckowski, J. Electroanal. Chem., 1987, 230(1-2), 221-231.  https://doi.org/10.1016/0022-0728(87)80144-4
  38. J. Lee, J. K. Yoo, J. Kim, Y. Sohn, and C. K. Rhee, Electrochim. Acta, 2018, 290, 244-254.  https://doi.org/10.1016/j.electacta.2018.09.078
  39. M. D. Macia, E. Herrero, J. M. Feliu, and A. Aldaz, J. Electroanal. Chem., 2001, 500(1-2), 498-509.  https://doi.org/10.1016/S0022-0728(00)00389-2
  40. A. Lopez-Cudero, F. J. Vidal-Iglesias, J, Solla-Gullon, E, Herrero, A. Aldaz, and J. M. Feliu, Phys. Chem. Chem. Phys., 2009, 11, 416-424. https://doi.org/10.1039/B814072C