Acknowledgement
The authors thank Shiquan Wang for help in collecting skin samples from the goats.
References
- Jiao Q, Wang YR, Zhao JY, Wang, ZY, Guo D, Bai WL. Identification and molecular analysis of cashmere goat lncRNAs reveal their integrated regulatory network and potential roles in secondary hair follicle. Anim Biotechnol 2021;32: 719-32. https://doi.org/10.1080/10495398.2020.1747477
- Hui T, Zhu Y, Shen J, et al. Identification and molecular analysis of m6A-circRNAs from cashmere goat reveal their integrated regulatory network and putative functions in secondary hair follicle during anagen stage. Animals (Basel) 2022;12:694. https://doi.org/10.3390/ani12060694
- Laron AE, Aamar E, Enshell-Seijffers D. The mesenchymal niche of the hair follicle induces regeneration by releasing primed progenitors from inhibitory effects of quiescent stem cells. Cell Rep 2018;24:909-21. https://doi.org/10.1016/j.celrep.2018.06.084
- Yan H, Gao Y, Ding Q, et al. Exosomal micro RNAs derived from dermal papilla cells mediate hair follicle stem cell proliferation and differentiation. Int J Biol Sci 2019;15:1368-82. https://doi.org/10.7150/ijbs.33233
- Shirokova V, Biggs LC, Jussila M, Ohyama T, Groves AK, Mikkola ML. Foxi3 deficiency compromises hair follicle stem cell specification and activation. Stem Cells 2016; 34:1896-908. https://doi.org/10.1002/stem.2363
- Deng Z, Lei X, Zhang X, et al. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. J Mol Cell Biol 2015;7:62-72. https://doi.org/10.1093/jmcb/mjv005
- Wang X, Chen H, Tian R, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun 2017;8:14091. https://doi.org/10.1038/ncomms14091
- Pazzaglia I, Mercati F, Antonini M, et al. PDGFA in cashmere goat: a motivation for the hair follicle stem cells to activate. Animals (Basel) 2019;9:38. https://doi.org/10.3390/ani9020038
- Li X, Wu Y, Xie F, et al. miR-339-5p negatively regulates loureirin A-induced hair follicle stem cell differentiation by targeting DLX5. Mol Med Rep 2018;18:1279-86. https://doi.org/10.3892/mmr.2018.9110
- Du KT, Deng JQ, He XG, Liu ZP, Peng C, Zhang MS. MiR214 Regulates the human hair follicle stem cell proliferation and differentiation by targeting ezh2 and Wnt/β-Catenin signaling way in vitro. Tissue Eng Regen Med 2018;15:341-50. https://doi.org/10.1007/s13770-018-0118-x
- Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017;27:626-41. https://doi.org/10.1038/cr.2017.31
- Zheng Y, Hui T, Yue C, et al. Comprehensive analysis of circRNAs from cashmere goat skin by next generation RNA sequencing (RNA-seq). Sci Rep 2020;10:516. https://doi.org/10.1038/s41598-019-57404-9
- Yin RH, Zhao SJ, Jiao Q, et al. CircRNA-1926 promotes the differentiation of goat SHF stem cells into hair follicle lineage by miR-148a/b-3p/CDK19 Axis. Animals (Basel) 2020;10:1552. https://doi.org/10.3390/ani10091552
- Zhu Y, Wang Y, Zhao J, et al. CircRNA-1967 participates in the differentiation of goat SHF-SCs into hair follicle lineage by sponging miR-93-3p to enhance LEF1 expression. Anim Biotechnol 2021 Sept 22 [Epub]. https://doi.org/10.1080/10495398.2021.1975729
- Zhao J, Shen J, Wang Z, et al. CircRNA-0100 positively regulates the differentiation of cashmere goat SHF-SCs into hair follicle lineage via sequestering miR-153-3p to heighten the KLF5 expression. Arch Anim Breed 2022;65:55-67. https://doi.org/10.5194/aab-65-55-2022
- Su H, Wang G, Wu L, Ma X, Ying K, Zhang R. Transcriptomewide map of m6A circRNAs identified in a rat model of hypoxia mediated pulmonary hypertension. BMC Genomics 2020;21:39. https://doi.org/10.1186/s12864-020-6462-y
- Su R, Fan Y, Qiao X, et al. Transcriptomic analysis reveals critical genes for the hair follicle of Inner Mongolia cashmere goat from catagen to telogen. PLoS One 2018;13:e0204404. https://doi.org/10.1371/journal.pone.0204404
- Ohyama M, Kobayashi T. Isolation and characterization of stem cell-enriched human and canine hair follicle keratinocytes. In: Singh S, editors. Somatic stem cells. Methods in molecular biology. Totowa, NJ, USA: Humana Press; 2012. vol 879. pp. 389-401. https://doi.org/10.1007/978-1-61779-815-3_24
- Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 1999;41:95-8. https://doi.org/10.1021/bk-1999-0734.ch008
- Han W, Yang F, Wu Z, et al. Inner Mongolian cashmere goat secondary follicle development regulation research based on mRNA-miRNA Co-analysis. Sci Rep 2020;10:4519. https://doi.org/10.1038/s41598-020-60351-5
- Chen Z, Ling K, Zhu Y, Deng L, Li Y, Liang Z. circ0000069 promotes cervical cancer cell proliferation and migration by inhibiting miR-4426. Biochem Biophys Res Commun 2021;551:114-20. https://doi.org/10.1016/j.bbrc.2021.03.020
- Yu C, Li L, Xie F, et al. LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc Res 2018; 114:168-79. https://doi.org/10.1093/cvr/cvx180
- Wang S, Chai P, Jia R, Jia R. Novel insights on m6A RNA methylation in tumorigenesis: a double-edged sword. Mol Cancer 2018;17:101. https://doi.org/10.1186/s12943-018-0847-4
- Nimantana, Zhang Y, Liu D, Li J. Expression of HFSC marker in the Arbas cashmere goat hair follicle and hair follicle stem cells. Biotechnology Bulletin 2018;34:201-5. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2017-0885
- Leavitt D, Wells M, Abarzua P, Murphy GF, Lian CG. Differential distribution of the epigenetic marker 5-hydroxymethylcytosine occurs in hair follicle stem cells during bulge activation. J Cutan Pathol 2019;46:327-34. https://doi.org/10.1111/cup.13434
- Yang D, Qiao J, Wang G, et al. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res 2018;46:3906-20. https:// doi.org/10.1093/nar/gky130
- Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013;495: 384-8. https://doi.org/10.1038/nature11993
- Han K, Wang FW, Cao CH, et al. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol Cancer 2020;19:60. https://doi.org/10.1186/s12943-020-01184-8
- Xing YZ, Wang RM, Yang K, et al. Adenovirus-mediated Wnt5a expression inhibits the telogen-to-anagen transition of hair follicles in mice. Int J Med Sci 2013;10:908-14. https://doi.org/10.7150/ijms.6137
- Rajendran R, Gangadaran P, Bak SS, et al. Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci Rep 2017;7:15560. https://doi.org/10.1038/s41598-017-15505-3
- Liu H, Xue L, Song C, Liu F, Jiang T, Yang X. Overexpression of circular RNA circ_001569 indicates poor prognosis in hepatocellular carcinoma and promotes cell growth and metastasis by sponging miR-411-5p and miR-432-5p. Biochem Biophys Res Commun 2018;503:2659-65. https://doi.org/10.1016/j.bbrc.2018.08.020
- Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015;22: 256-64. https://doi.org/10.1038/nsmb.2959
- Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014;56:55-66. https://doi.org/10.1016/j.molcel.2014.08.019
- Huang C, Shan G. What happens at or after transcription: Insights into circRNA biogenesis and function. Transcription 2015;6:61-4. https://doi.org/10.1080/21541264.2015.1071301
- Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature 2015;519:482-5. https://doi.org/10.1038/nature14281
- Haussmann IU, Bodi Z, Sanchez-Moran E, et al. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 2016;540:301-4. https://doi.org/10.1038/nature20577
- Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012;149:1635-46. https://doi.org/10.1016/j.cell.2012.05.003
- Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N (6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 2015;518:560-4. https://doi.org/10.1038/nature14234
- van Amerongen R, Fuerer C, Mizutani M, Nusse R. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev Biol 2012;369:101-14. https://doi.org/10.1016/j.ydbio.2012.06.020
- He L, Lei M, Xing Y, et al. Gsdma3 regulates hair follicle differentiation via Wnt5a-mediated non-canonical Wnt signaling pathway. Oncotarget 2017;8:100269-79. https://doi.org/10.18632/oncotarget.22212
- Reddy S, Andl T, Bagasra A, et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 2001;107:69-82. https://doi.org/10.1016/s0925-4773(01)00452-x