DOI QR코드

DOI QR Code

A Study on Safety Assessment for Low-flashpoint and Eco-friendly Fueled Ship

친환경연료 선박의 가스누출 피해저감을 위한 연구

  • Ryu Bo Rim (Department of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Duong Phan Anh (Department of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Kang Ho Keun (Division of Coast Guard Studies, Korea Maritime and Ocean University)
  • 류보림 (한국해양대학교 기관시스템공학과) ;
  • ;
  • 강호근 (한국해양대학교 해양경찰학과)
  • Received : 2022.11.10
  • Accepted : 2023.02.20
  • Published : 2023.02.28

Abstract

To limit greenhouse gas emissions from ships, numerous environmental regulations and standards have been taken into effect. As a result, alternative fuels such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), ammonia, and biofuels have been applied to ships. Most of these alternative fuels are low flashpoint fuels in the form of liquefied gas. Their use is predicted to continue to increase. Thus, management regulations for using low flash point fuel as a ship fuel are required. However, they are currently insufficient. In the case of LNG, ISO standards have been prepared in relation to bunkering. The Society for Gas as a Marine Fuel (SGMF), a non-governmental organization (NGO), has also prepared and published a guideline on LNG bunkering. The classification society also requires safety management areas to be designated according to bunkering methods and procedures for safe bunkering. Therefore, it is necessary to establish a procedure for setting a safety management area according to the type of fuel, environmental conditions, and leakage scenarios and verify it with a numerical method. In this study, as a feasibility study for establishing these procedures, application status and standards of the industry were reviewed. Classification guidelines and existing preceding studies were analyzed and investigated. Based on results of this study, a procedure for establishing a safety management area for bunkering in domestic ports of Korea can be prepared.

선박의 온실가스 감축을 위한 다양한 환경규제가 발효되었고, 이로 인해 액화 천연 가스(Liquid natural gas, LNG), 액화 석유 가스(Liquefied petroleum gas, LPG), 암모니아 그리고 바이오 연료 등 여러 대체 연료를 선박에 적용하고 있다. 대안 연료의 대부분이 액화가스형태의 저인화점 연료가 많이 거론되고 있고 그 사용량은 지속적으로 늘어날 것으로 예상된다. 이에 따라, 이러한 저인화점 연료를 선박 연료로써 이용하기 위한 표준이나 지침서가 필요한데 아직까지 미비한 실정이다. LNG의 경우, 벙커링과 관련하여 ISO 표준이 마련되었고 비영리민간기구(NGO)인 선박가스연료협회(Society for Gas as a Marine Fuel, SGMF)에서도 LNG 벙커링에 대한 지침서를 마련하여 발간하였다. 이와 더불어, 선급에서도 안전한 벙커링을 위해 벙커링 방법과 절차에 따라 안전관리구역을 지정하도록 하고 있다. 따라서, 연료에 따른 안전관리구역을 설정하기 위한 절차를 마련하고 절차 수립을 위해 벙커링 환경조건과 가스 누출 시나리오를 분석하고 이를 토대로 수치해석적 방법으로 검증이 필요하다. 본 연구에서는 이러한 절차 수립을 위한 초기 연구로써, 산업계의 적용 현황과 표준을 살펴보고 선급 지침서와 기존 선행 연구를 분석 및 조사하였다. 이를 바탕으로 국내 항만에서 벙커링을 위한 안전관리구역 설정을 위한 절차를 마련하고자 한다.

Keywords

Acknowledgement

이 논문은 2020년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20200520, 수소선박안전기준개발사업). 이 논문은 2022년 정부(산업통상자원부)의 재원으로 한국산업기술평가관리원의 지원을 받아 수행된 연구임.(RS-2022-00144116, 2022년 친환경선박전주기핵심기술개발사업) 이 논문은 2022학년도 한국해양대학교 연구진흥사업 연구비의 지원을 받아 수행된 연구임. 본 논문은 부산광역시 및 (재)부산인재평생교육진흥원의 BB21플러스 사업으로 지원된 연구임. 본 논문은 한국해양수산개발원이 후원한 해양수산 미래 리스크 논문 공모전 수상작임을 밝힙니다.

References

  1. Basha, O., Olewski, T., Vechot, L., Castier, M. and Mannan, S.(2014), Modeling of pool spreading of LNG on land, Journal of Loss Prevention in the Process Industries, Vol. 30, pp. 307-314. https://doi.org/10.1016/j.jlp.2014.04.012
  2. Bureau Veritas(BV)(2014), Guidelines on LNG Bunkering, Guidance Note NI 618 DT R00 E.
  3. D. Archer, S Rahmstorf, The climate crisis: An introductory guide to climate change.
  4. DNVGL(2014), Liquefied Natural Gas (LNG) Bunkering Study, DNVGL-Report No. PP087423-4, Rev. 3.
  5. DNVGL(2015), Development and operation of liquefied natural gas bunkering facilities, DNVGL-RP-G105.
  6. Dong, S., He, Y., Dong, J., Peng, Z. and Fu, G.(2020), A Review of Leakage and Dispersion of LNG on the Ground, Energy Engineering, Vol. 118, No. 1, pp. 103-118. https://doi.org/10.32604/EE.2020.012362
  7. European Maritime Safety Agency(EMSA)(2018), EMSA Guidance on LNG Bunkering to Port Authorities and Administrations.
  8. Zhu, G., Guo, X., Yi, Y., Tan, W. and Ji, C.(2020), "Experiment and simulation research of evolution process for LNG leakage and diffusion," J. Loss Prev. Process Ind., Vol. 64, No. January, p. 104041, doi: 10.1016/j.jlp.2019.104041.
  9. Ciccarelli, G., Jackson, D. and Verreault, J.(2006), "Flammability limits of NH3-H2-N2-air mixtures at elevated initial temperatures," Combust. Flame, Vol. 144, No. 1-2, pp. 53-63, doi: 10.1016/j.combustflame.2005.06.010.
  10. Gexcon AS, 2019, FLACS v10.9 User's Manual.
  11. Gopalaswami, N., Kakosimos, K., Zhang, B., Liu, Y. and Mentzer, R.(2017), Experimental and numerical study of liquefied natural gas (LNG) pool spreading and vaporization on water, Journal of Hazardous Materials, Vol. 334, No. 15, pp. 244-255.
  12. Global Maritime Forum(GMF)(2021), Five percent zero emission fuels by 2030 needed for Paris-aligned shipping decarbonization. Getting to Zero Coalition Insight Series. Available at : https://www.globalmaritimeforum.org/content/2021/03/Getting-to-ZeroCoalition_Five-percent-zero-emission-fuelsby-2030.pdf.
  13. Guo, D., Zhao, P., Wang, R., Yao, R. and Hu, J.(2019), Numerical simulation studies of the effect of atmospheric stratification on the dispersion of LNG vapor released from the top of a storage tank, Journal of Loss Prevention in the Process Industries, Vol. 61, pp. 275-286. https://doi.org/10.1016/j.jlp.2019.07.004
  14. Horvat, A.(2018), CFD methodology for simulation of LNG spills and rapid phase transition (RPT), Process Safety and Environmental Protection, Vol. 120, pp. 358-369. https://doi.org/10.1016/j.psep.2018.09.025
  15. IMO - International Maritime Organization(2018) UN body adopts climate change strategy for shipping. https://www.imo.org/en/MediaCentre/PressBriefings/Pages/06GHGinitialstrategy.aspx
  16. International Association of Classification Societies (IACS)(2016), LNG Bunkeing guidelines.
  17. ISO/TS 18683(Guidelines for systems and installations for supply of LNG as fuel to ships).
  18. Jeong, B. U., Park, S. Y., Ha, S. M. and Lee, J. U.(2020), Safety evaluation on LNG bunkering: To enhance practical establishment of safety zone, Ocean Engineering, Vol. 216, Article, 107804.
  19. Kim, C. M. and Choi, B. C.(2017), Dispersion analysis of the unignited flare gas in an LNG-FPSO vessel, Journal of Advanced Marine Engineering and Technology, Vol. 41, No. 8, pp. 753-759. https://doi.org/10.5916/jkosme.2017.41.8.753
  20. Klebanoff, L. E., Pratt, J. W. and LaFleur, C. B., Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry, International Journal of Hydrogen Energy, Vol. 42, Issue. 1, pp. 757-774.
  21. M. Yarandi, M. Mahdinia, J. Barazandeh, and A. Soltanzadeh(2021), "Evaluation of the toxic effects of ammonia dispersion: Consequence analysis of ammonia leakage in an industrial slaughterhouse," Med. Gas Res., Vol. 11, No. 1, pp. 24-29, doi: 10.4103/2045-9912.310056.
  22. Park, S. I., Kim, S. K. and Paik, J. K.(2020), Safety-zone layout design for a floating LNG-Fueled power plant in bunkering process, Ocean Engineering, Vol. 196, Article, 106774.
  23. Park, S. Y., Jeong, B. U., Yoon, J. Y. and Paik, J. K. (2018), A Study on Factors Affecting the Safety Zone in Ship-to-Ship LNG Bunkering, Ships and Offshore Structures, Vol. 13, Issue. 1, pp. 312-321. https://doi.org/10.1080/17445302.2018.1461055
  24. Saleem, A., Farooq, S., Karimi, I. A. and Banerjee, R. (2018), A CFD simulation study of boiling mechanism and BOG generation in a full-scale LNG storage tank, Computers & Chemical Engineering, Vol. 115, pp. 112-120. https://doi.org/10.1016/j.compchemeng.2018.04.003
  25. Society for Gas as a Marine Fuel(SGMF(2018), Recommendation of Controlled Zones during LNG Bunkering, SGMF.
  26. Swedish Marine Technology Forum(SMTF)(2010), LNG ship to ship bunkering procedure.
  27. Tofalos, C., Jeong, B. and Jang, H., Safety comparison analysis between LNG/LH2 for bunkering operation, JOURNAL OF INTERNATIONAL MARITIME SAFETY, ENVIRONMENTAL AFFAIRS, AND SHIPPING, Vol. 4, No. 4, pp. 135-150.
  28. Vilchez, J. A., Villafane, D. and, Casal, J.(2013), A dispersion safety factor for LNG vapor clouds. Journal of Hazardous Materials, Vol. 246, No. 247, pp. 181-188. https://doi.org/10.1016/j.jhazmat.2012.11.045
  29. Xie, Q., Lu, Q., Yuan, Y., Zhang, J. and Zhou, F.(2021), Numerical study on the horizontal stretching effect of ground on high-pressure vapor jets of LNG tank leakage, Journal of Loss Prevention in the Process Industries, Vol. 72, Article. 104526.
  30. Zhu, D. Z.(2014), "Example of simulating analysis on LNG leakage and dispersion," Procedia Eng., Vol. 71, pp. 220-229, doi: 10.1016/j.proeng.2014.04.032.