Acknowledgement
The authors are grateful to the reviewers for their valuable suggestions and constructive comments for the improvement of the paper.
References
- W. Bergweiler, On the Nevanlinna Characteristic of a composite function, Complex Variables Theory Appl. 10 (1988), 225-236.
- B. Belaidi, Fast growing solutions to linear differential equations with entire coefficients having the same ρφ-order, J. Math. Appl. 42 (2019), 63-77.
- B. Belaidi, Growth of ρφ-order solutions of linear differential equations with entire coefficients, Pan-American Math. J. 27 (2017), no. 4, 26-42.
- T. Biswas and C. Biswas, Generalized (α, β) order based on some growth properties of wronskians, Mat. Stud. 54 (2020), no. 1, 46-55. https://doi.org/10.30970/ms.54.1.46-55
- I. Chyzhykov and N. Semochko, Fast growing entire solutions of linear differential equations, Math. Bull. Shevchenko Sci. Soc. 13 (2016), 1-16.
- A. A. Goldberg and N. N. Strochik, Asymptotic behaviour of meromorphic functions of completely regular growth and their logarithmic derivatives ( Russian) Sib. Mat. Zh. 26 (1985), no. 6(154), 29-38 (English translation: Sib. Math. J. 26 (1985), 802-809.
- W.K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
- O. P. Juneja, G. P. Kapoor, and S. K. Bajpai, On the (p, q)-order and lower (p, q)-order of an entire function, J. Reine Angew. Math. 282 (1976), 53-67.
- M. A. Kara and B. Belaidi, Growth of φ-order solutions of linear differential equations with meromorphic coefficients on the complex plane, Ural Math. J. 6 (2020), no. 1, 95-113.
- L. Kinnnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22 (1998), no. 4, 385-405.
- I. Lahiri, Generalised proximate order of meromorphic functions, Mat. Vesnik 41 (1989), 9-16.
- I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter Studies in Mathematics, Berlin: Walter de Gruyter & Co. 15, 341p., 1993.
- R. Nevanlinna, Zur theorie der meromorphen funktionen, Acta. Math. 46 (1925), no. 1-2, 1-99. https://doi.org/10.1007/BF02543858
- L. M. S. Ruiz, S. K. Datta, T. Biswas, and C. Ghosh, A note on relative (p, q) th proximate order of entire functions, J. Math. Res. 8 (2016), no. 5, http://dx.doi.org/10.5539/jmr.v8n5p1.
- D. Sato, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc. 69 (1963), 411-414. https://doi.org/10.1090/S0002-9904-1963-10951-9
- S. M. Shah, On proximate orders of integral functions, Bull. Amer. Math. Soc. 52 (1946), 326-328. https://doi.org/10.1090/S0002-9904-1946-08572-9
- S. M. Shah, A note on lower proximate orders, J. Indian Math. Soc. (N.S.) 12 (1948), 31-32.
- M. N. Sheremeta, Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion, Izv. Vyssh. Uchebn. Zaved Mat. 2 (1967) 100-108 (in Russian).
- R. S. L. Srivastava and O. P. Juneja, On proximate type of entire functions, Composito Mathematica 18 (1967), 7-12.
- G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publishing Company, New York (NY) USA, 1949.
- L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993.
- L. Yang, Value Distribution Theory and its New Research, Science Press, Beijing (in Chinese), 1988.