DOI QR코드

DOI QR Code

A NOTE ON 𝜑-PROXIMATE ORDER OF MEROMORPHIC FUNCTIONS

  • Received : 2022.03.06
  • Accepted : 2022.11.01
  • Published : 2023.03.25

Abstract

The main aim of this paper is to introduce the definition of 𝜑-proximate order of a meromorphic function on the complex plane. By considering the concept of 𝜑-proximate order, we will extend some previous results of Lahiri [11]. Furthermore, as an application of 𝜑-proximate order, a result concerning the growth of composite entire and meromorphic function will be given.

Keywords

Acknowledgement

The authors are grateful to the reviewers for their valuable suggestions and constructive comments for the improvement of the paper.

References

  1. W. Bergweiler, On the Nevanlinna Characteristic of a composite function, Complex Variables Theory Appl. 10 (1988), 225-236.
  2. B. Belaidi, Fast growing solutions to linear differential equations with entire coefficients having the same ρφ-order, J. Math. Appl. 42 (2019), 63-77.
  3. B. Belaidi, Growth of ρφ-order solutions of linear differential equations with entire coefficients, Pan-American Math. J. 27 (2017), no. 4, 26-42.
  4. T. Biswas and C. Biswas, Generalized (α, β) order based on some growth properties of wronskians, Mat. Stud. 54 (2020), no. 1, 46-55. https://doi.org/10.30970/ms.54.1.46-55
  5. I. Chyzhykov and N. Semochko, Fast growing entire solutions of linear differential equations, Math. Bull. Shevchenko Sci. Soc. 13 (2016), 1-16.
  6. A. A. Goldberg and N. N. Strochik, Asymptotic behaviour of meromorphic functions of completely regular growth and their logarithmic derivatives ( Russian) Sib. Mat. Zh. 26 (1985), no. 6(154), 29-38 (English translation: Sib. Math. J. 26 (1985), 802-809.
  7. W.K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
  8. O. P. Juneja, G. P. Kapoor, and S. K. Bajpai, On the (p, q)-order and lower (p, q)-order of an entire function, J. Reine Angew. Math. 282 (1976), 53-67.
  9. M. A. Kara and B. Belaidi, Growth of φ-order solutions of linear differential equations with meromorphic coefficients on the complex plane, Ural Math. J. 6 (2020), no. 1, 95-113.
  10. L. Kinnnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22 (1998), no. 4, 385-405.
  11. I. Lahiri, Generalised proximate order of meromorphic functions, Mat. Vesnik 41 (1989), 9-16.
  12. I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter Studies in Mathematics, Berlin: Walter de Gruyter & Co. 15, 341p., 1993.
  13. R. Nevanlinna, Zur theorie der meromorphen funktionen, Acta. Math. 46 (1925), no. 1-2, 1-99. https://doi.org/10.1007/BF02543858
  14. L. M. S. Ruiz, S. K. Datta, T. Biswas, and C. Ghosh, A note on relative (p, q) th proximate order of entire functions, J. Math. Res. 8 (2016), no. 5, http://dx.doi.org/10.5539/jmr.v8n5p1.
  15. D. Sato, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc. 69 (1963), 411-414. https://doi.org/10.1090/S0002-9904-1963-10951-9
  16. S. M. Shah, On proximate orders of integral functions, Bull. Amer. Math. Soc. 52 (1946), 326-328. https://doi.org/10.1090/S0002-9904-1946-08572-9
  17. S. M. Shah, A note on lower proximate orders, J. Indian Math. Soc. (N.S.) 12 (1948), 31-32.
  18. M. N. Sheremeta, Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion, Izv. Vyssh. Uchebn. Zaved Mat. 2 (1967) 100-108 (in Russian).
  19. R. S. L. Srivastava and O. P. Juneja, On proximate type of entire functions, Composito Mathematica 18 (1967), 7-12.
  20. G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publishing Company, New York (NY) USA, 1949.
  21. L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993.
  22. L. Yang, Value Distribution Theory and its New Research, Science Press, Beijing (in Chinese), 1988.