DOI QR코드

DOI QR Code

부식 수준 및 균열폭에 따른 부식된 철근과 콘크리트 계면의 부착-미끄러짐 거동

Effect of Corrosion Level and Crack Width on the Bond-Slip Behavior at the Interface between Concrete and Corroded Steel Rebar

  • 조상현 (동아대학교 ICT 융합 해양스마트시티 공학과 ) ;
  • 기성훈 (동아대학교 ICT 융합 해양스마트시티 공학과) ;
  • 이정재 (동아대학교 ICT 융합 해양스마트시티 공학과 ) ;
  • 이창계 (동아대학교 해양도시건설.방재연구소 )
  • 투고 : 2022.11.14
  • 심사 : 2023.01.04
  • 발행 : 2023.02.28

초록

본 논문에서는 부식된 철근과 콘크리트 계면의 부착강도-슬립거동에 있어 부식수준 및 균열폭의 영향에 대한 연구를 수행하였다. 기존의 연구는 주로 부식수준에 따른 부착강도 저하에 초점을 맞추고 있으나 부식에 의한 콘크리트 표면 균열폭에 따른 부착강도 저하에 관한 연구는 매우 적다. 따라서 본 연구에서는 부식된 철근과 콘크리트 접합부의 부착강도, 슬립 거동 및 철근의 질량손실 등을 평가하고 균열폭 대비 접합성능을 확인하기 인발시험을 실시하였다. 그 결과로 표면 균열폭에 따른 접착강도 저하의 경향성이 부식수준에 따른 경향성보다 균등하게 나타났다. 따라서 부식수준에 비해 콘크리트 표면 균열 발생 여부가 부착강도-슬립거동 관계의 성능저하를 판단하기에 적합한 것으로 판단된다.

In this paper, the effect of corrosion level and crack width on the cohesive strength-slip behavior of corroded steel rebar and concrete interface is conducted. The existing studies mainly focus on the decrease in bond strength with respect to the level of corrosion; there are, however, few studies on the decrease in cohesive strength according to the crack width of the concrete surface due to corrosion. Therefore, in this study, a series of tests for the cohesive strength, slip behavior and mass loss of the reinforcing bar is evaluated at the surface of corroded rebar and concrete. It is found that the tendency to decrease the bond strength is closely related to the crack width rather than the corrosion level. Hence, to determine the degradation performance for the bond strength-slip behavior relation, the occurrence of cracks on the concrete surface can be a suitable index.

키워드

과제정보

이 연구는 국토교통부 재원으로 국토교통과학기술진흥원의 건설교통기술 촉진연구과제의 지원으로 수행된 연구입니다(Grant 21CTAP-C163815-01).

참고문헌

  1. Choi, S. Y., Choi, M. S., Kim, I. S., and Yang, E. I. (2021), A study on the evaluation method to flexural-bonding behavior of FRP-rebar concrete member, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 25(5), 149-156 (in Korean).  https://doi.org/10.11112/JKSMI.2021.25.5.149
  2. Kim, K., S., Park, K. T., and Kim, J. (2020), Evaluating chloride absorption of reinforced concrete structures with crack widths, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 24(6), 10-16 (in Korean).  https://doi.org/10.11112/JKSMI.2020.24.6.10
  3. Lee, S. H., Lee, S. G., Lee, H., and Hong, K. J. (2021), Seismic-performance experiments of circular shear piers considering effects of rebar corrosion, lap slice and axial load, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 25(6), 143-153 (in Korean).  https://doi.org/10.11112/JKSMI.2021.25.6.143
  4. Park, J. H., and Lee, H. S. (2017), An experimental study of the corrosion behavior evaluation of rebar in concrete by using electrochemical impedance spectroscopy (EIS) method, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 21(1), 83-90 (in Korean).  https://doi.org/10.11112/JKSMI.2017.21.1.083
  5. Lin, H., Zhao, Y., Feng, P., Ye, H., Ozbolt, J., Jiang, C., and Yang, J.-Q. (2019), State-of-the-art review on the bond properties of corroded reinforcing steel bar, Construction and Building Materials, Elsevier, 213, 216-233.  https://doi.org/10.1016/j.conbuildmat.2019.04.077
  6. Du, R., Jang, I., Lee, H., and Yi, C. (2022), Effect of curing solution and pre-rust process on rebar corrosion in the cement composite, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 26(2), 1-8 (in Korean).  https://doi.org/10.11112/JKSMI.2022.26.2.1
  7. Chung, L., Najm, H., & Balaguru, P. (2008), Flexural behavior of concrete slabs with corroded bars, Cement and Concrete Composites, Elsevier, 30(3), 184-193.  https://doi.org/10.1016/j.cemconcomp.2007.08.005
  8. Euro-International Committee for Concrete (1990), CEB-FIP Model Code 1990, British Standard Institution, London, UK. 
  9. Jiang, C., Wu, Y.-F., and Dai, M.-J. (2018), Degradation of steel-to-concrete bond due to corrosion, Construction and Building Materials, Elsevier, 158, 1073-1080.  https://doi.org/10.1016/j.conbuildmat.2017.09.142
  10. Choi, Y. S., Yi, S. T., Kim, M. Y., Jung, W. Y. and Yang, E. I. (2014), Effect of corrosion method of the reinforcing bar on bond characteristics in reinforced concrete specimens, Construction and Building Materials, Elsevier, 54, 180-189.  https://doi.org/10.1016/j.conbuildmat.2013.12.065
  11. Bhargava, K., Ghosh, A. K., Mori, Y., and Ramanujam, S. (2007), Corrosion-induced bond strength degradation in reinforced concrete - Analytical and empirical models, Nuclear Engineering and Design, Elsevier, 237(11), 1140-1157.  https://doi.org/10.1016/j.nucengdes.2007.01.010
  12. Fischer, C., Ozbolt, J., and Gehlen, C. (2010), Numerical investigation on bond behavior of corroded reinforcement, In Proceedings of the 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 779-785. 
  13. Fischer, C., (2010), Experimental investigations on the effect of corrosion on bond of deformed bars, In Proceedings of the 8th fib PhD Symposium. 
  14. Law, D. W., Tang, D., Molyneaux, T. K. C., and Gravina, R. (2011), Impact of crack width on bond: confined and unconfined rebar, Materials and Structures, Springer, 44, 1287-1296.  https://doi.org/10.1617/s11527-010-9700-y
  15. Li, F., and Yuan, Y. (2013), Effects of corrosion on bond behavior between steel strand and concrete, Construction and Building Materials, Elsevier, 38, 413-422. https://doi.org/10.1016/j.conbuildmat.2012.08.008