DOI QR코드

DOI QR Code

A Study on the Verification of Crashworthiness for Fuel System of Military Rotorcraft

군용 회전익항공기 연료계통 내추락성 입증에 관한 연구

  • Sangsoo Park (Defence Agency for Technology and Quality) ;
  • Junmo Yang (Defense Rapid Acquisition Technology Research Institute) ;
  • Munguk Kim (Korea Research Institute for defense Technology planning and advancement) ;
  • Jaechul Kim (Defence Agency for Technology and Quality)
  • Received : 2022.10.11
  • Accepted : 2022.12.18
  • Published : 2023.02.28

Abstract

The aircraft fuel system performs a number of functions such as supplying fuel, transferring fuel between fuel tanks, and measuring the amount of residual fuel in each fuel tank. Since it is a direct cause of fire hazard in crash incident, it is a must to improve survivability of crew members by designing the airframe to tolerate expected crash impact. The civil aviation authority requires intensive verification of the fuel system design to determine precise application of the airworthiness requirement. Research activity on airworthiness certification criteria and verification scheme is still insufficient, although it has a significant importance. In this paper, as part of a study to improve flight safety by developing guidelines for demonstrating fuel system crash resistance, analysis results of fuel system crash-related airworthiness certification standards, verification scheme, and cases study applicable to military rotorcraft have been reviewed.

항공기 연료계통은 연료 공급, 연료탱크 간 연료이송, 각 연료탱크 내의 잔여 연료량 측정 등의 기능을 수행하며, 추락 시 화재의 직접적인 원인이 되기 때문에 추락에 견딜 수 있도록 설계하여 승무원의 추락 생존성을 높여야 한다. 민간에서는 연료계통의 내추락 설계를 감항 요구도로 반영하여 철저한 검증을 요구하고 있으며, 비행안전이 확보된 항공기 개발을 위해 관련 감항인증기준 및 입증방안에 대한 연구가 필수적이나 미미한 실정이다. 이러한 사항에 착안하여 본 논문에서는 연료계통 내추락성 입증 지침 마련을 통한 비행안전성 향상 방안 연구의 일환으로 군용 회전익항공기에 적용 가능한 연료계통 내추락 관련 감항인증기준, 입증방법 및 적용 사례에 대한 분석 결과를 기술하였다.

Keywords

References

  1. K. sungkyum, "Trends of Crashworthiness Design Criteria for Rotorcraft", Current Industrial and Technological Trends in Aerospace, Vol. 5, No, 1, pp. 104-111, July 2007.
  2. Federal Aviation Administration, "TRotorcraft Crashworthy Airframe and Fuel System Technology Development Program", Oct. 1994.
  3. FAR part 29 : Airworthiness Standard for Transport Category Rotorcraft, Federal Aviation Administration, United States, 2022.
  4. CS-29 : Certification Specifications for Large Rotorcraft, European Union Aviation Safety Agency, European Union, 2022.
  5. KAS part 29 : Airworthiness Standard for Transport Category Rotorcraft, Ministry of Land, Korea, 2021.
  6. AC 29-2C : Advice Circular for Certification of Transport Category Aircraft, Federal Aviation Administration, United States, 2014.
  7. AMACC : Army Military Airworthiness Certification Criteria, U.S Army Combat Capoabilities Development Command, United States, 2020.
  8. MIL-DTL-27422F : Detail Specification for The Tank, Fuel, Crash-Resistant, Ballistic-Tolerant, Aircraft, U.S Army Aviation and Missile Command, United States, 2014.
  9. L. Junghoon, K. Sungchan and K. hyungi, "Preliminary Design of Helicopter Fuel Tank", Journal of Aerospace System Engineering, Vol. 2, No, 2, pp. 14-19, June 2008.
  10. K. Hyungi, K. Sungchan, L. Jongwon, H. Inhee, H. Jangwook, S. Dongwoo, J. Pilsun, J. Taekyung and H. Byungkun, "Assessment of Crashworthiness Performance for Fuel Tank of Rotorcraft", Journal of The Korean Society Aeronautical and Space Sciences, Vol. 38, No, 8, pp. 806-812, Aug. 2010. https://doi.org/10.5139/JKSAS.2010.38.8.806