DOI QR코드

DOI QR Code

Optimization of Characteristic Change due to Differences in the Electrode Mixing Method

전극 혼합 방식의 차이로 인한 특성 변화 최적화

  • Jeong-Tae Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Carlos Tafara Mpupuni (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Beom-Hui Lee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Sun-Yul Ryou (Department of Chemical and Biological Engineering, Hanbat National University)
  • Received : 2022.11.20
  • Accepted : 2022.12.05
  • Published : 2023.02.28

Abstract

The cathode, which is one of the four major components of a lithium secondary battery, is an important component responsible for the energy density of the battery. The mixing process of active material, conductive material, and polymer binder is very essential in the commonly used wet manufacturing process of the cathode. However, in the case of mixing conditions of the cathode, since there is no systematic method, in most cases, differences in performance occur depending on the manufacturer. Therefore, LiMn2O4 (LMO) cathodes were prepared using a commonly used THINKY mixer and homogenizer to optimize the mixing method in the cathode slurry preparation step, and their characteristics were compared. Each mixing condition was performed at 2000 RPM and 7 min, and to determine only the difference in the mixing method during the manufacture of the cathode other experiment conditions (mixing time, material input order, etc.) were kept constant. Among the manufactured THINKY mixer LMO (TLMO) and homogenizer LMO (HLMO), HLMO has more uniform particle dispersion than TLMO, and thus shows higher adhesive strength. Also, the result of the electrochemical evaluation reveals that HLMO cathode showed improved performance with a more stable life cycle compared to TLMO. The initial discharge capacity retention rate of HLMO at 69 cycles was 88%, which is about 4.4 times higher than that of TLMO, and in the case of rate capability, HLMO exhibited a better capacity retention even at high C-rates of 10, 15, and 20 C and the capacity recovery at 1 C was higher than that of TLMO. It's postulated that the use of a homogenizer improves the characteristics of the slurry containing the active material, the conductive material, and the polymer binder creating an electrically conductive network formed by uniformly dispersing the conductive material suppressing its strong electrostatic properties thus avoiding aggregation. As a result, surface contact between the active material and the conductive material increases, electrons move more smoothly, changes in lattice volume during charging and discharging are more reversible and contact resistance between the active material and the conductive material is suppressed.

리튬 이차전지의 4 대 구성요소에 포함되는 양극은 배터리의 에너지 밀도를 담당하는 중요한 구성요소에 속하며, 보편적으로 제작되는 양극의 습식 제작 공정에는 활물질, 도전재, 고분자 바인더의 혼합 과정이 필수적으로 이루어지게 된다. 하지만, 양극의 혼합 조건의 경우 체계적인 방법이 갖추어져 있지 않기 때문에 제조사에 따라 성능의 차이가 발생하는 경우가 대다수이다. 따라서, 양극의 슬러리 제작 단계에서 정돈되지 않은 혼합 방법의 최적화를 진행을 위해 보편적으로 사용되는 THINKY mixer와 homogenizer를 이용한 LiMn2O4 (LMO) 양극을 제조해 각각의 특성을 비교하였다. 각 혼합 조건은 2000 RPM, 7 min으로 동일하게 진행하였으며, 양극의 제조 동안 혼합 방법의 차이만을 판단하기 위해 다른 변수 조건들은 차단한 후, 실험을 진행하였다(혼합 시간, 재료 투입 순서 등). 제작된 THINKY mixer LMO (TLMO), homogenizer LMO (HLMO) 중 HLMO는 TLMO보다 더 고른 입자 분산 특성을 가지며, 그로 인한 더 높은 접착 강도를 나타낸다. 또한, 전기화학적 평가 결과, HLMO는 TLMO와 비교하여 개선된 성능과 안정적인 수명 주기를 보였다. 결과적으로 수명특성평가에서 초기 방전 용량 유지율은 HLMO가 69 사이클에서 TLMO와 비교하여 약 4.4 배 높은 88%의 유지율을 보였으며, 속도성능평가의 경우 10, 15, 20 C의 높은 전류밀도에서 HLMO가 더 우수한 용량 유지율과 1C에서의 용량 회복률 역시 우수한 특성을 나타냈다. 이는 활물질과 도전재 및 고분자 바인더가 포함된 슬러리 특성이 homogenizer를 사용할 때, 정전기적 특성이 강한 도전재가 뭉치지 않고 균일하게 분산되어 형성된 전기 전도성 네트워크를 생성할 수 있기 때문으로 간주된다. 이로 인해 활물질과 도전재의 표면 접촉이 증가하고, 전자를 보다 원활하게 전달하여 충전 및 방전 과정에서 나타나는 격자의 부피변화, 활물질과 도전재 사이의 접촉저항의 증가 등을 억제하는 것에 기인한다.

Keywords

Acknowledgement

본 연구는 대한민국 정부(산업통상자원부 및 방위사업청) 재원으로 민군협력진흥원에서 수행하는 민군기술개발사업(민군겸용기술개발사업) 다목적 무인차량용 고출력 및 고안전 전고체 이차전지 기술개발(22-CM-FC-20)의 연구비 지원으로 수행되었습니다.

References

  1. Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 111(5), 3577-3613 (2011).  https://doi.org/10.1021/cr100290v
  2. A. Tsuzaki, H. Ando, M. Yao, T. Kiyobayashi, R. Kondo, and H. T. Takeshita, A new bio-based battery material: Effect of rate of anthraquinone skeleton incorporation into polyglycidol on battery performance, Energy Procedia, 89, 207-212 (2016).  https://doi.org/10.1016/j.egypro.2016.05.027
  3. X. Zuo, J. Zhu, P. Muller-Buschbaum, and Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy, 31, 113-143 (2017).  https://doi.org/10.1016/j.nanoen.2016.11.013
  4. X. Zeng, J. Li, and N. Singh, Recycling of spent lithium-ion battery: a critical review, Crit. Rev. Environ. Sci. Technol., 44(10), 1129-1165 (2014).  https://doi.org/10.1080/10643389.2013.763578
  5. A. L. Mong, Q. X. Shi, H. Jeon, Y. S. Ye, X. L. Xie, and D. Kim, Tough and flexible, super ion-conductive electrolyte membranes for lithium-based secondary battery applications, Adv. Funct. Mater., 31(12), 2008586 (2021). 
  6. X. Chen, W. Shen, T. T. Vo, Z. Cao, and A. Kapoor, An overview of lithium-ion batteries for electric vehicles, International Power & Energy Conference (IPEC), 230-235 (2012). 
  7. R. V. Kumar and T. Sarakonsri, Introduction to electrochemical cells, In: K. E. Aifantis, S. A. Hackney, and R. V. Kumar, High energy density lithium batteries: Materials, engineering, applications, 1-25, Wiley-VCH, Weinheim (2010). 
  8. K. Kanamura, H. Takezawa, S. Shiraishi, and Z. i. Takehara, Chemical reaction of lithium surface during immersion in LiClO4 or LiPF6/DEC electrolyte, J. Electrochem. Soc., 144(6), 1900 (1997). 
  9. J. Li, Z. Kong, X. Liu, B. Zheng, Q. H. Fan, E. Garratt, T. Schuelke, K. Wang, H. Xu, and H. Jin, Strategies to anode protection in lithium metal battery: A review, InfoMat, 3(12), 1333-1363 (2021).  https://doi.org/10.1002/inf2.12189
  10. J. Song, M.-H. Ryou, B. Son, J.-N. Lee, D. J. Lee, Y. M. Lee, J. W. Choi, and J.-K. Park, Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries, Electrochim. Acta, 85, 524-530 (2012).  https://doi.org/10.1016/j.electacta.2012.06.078
  11. T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, Lithium-ion batteries: Outlook on present, future, and hybridized technologies, J. Mater. Chem. A, 7, 2942-2964 (2019).  https://doi.org/10.1039/c8ta10513h
  12. M. Noel and V. Suryanarayanan, Role of carbon host lattices in Li-ion intercalation/de-intercalation processes, J. Power Sources, 111(2), 193-209 (2002).  https://doi.org/10.1016/S0378-7753(02)00308-7
  13. R. Goncalves, S. Lanceros-Mendez, and C. M. Costa, Electrode fabrication process and its influence in lithium-ion battery performance: State of the art and future trends, Electrochem. Commun., 135, 107210 (2022). 
  14. D. Liu, L.-C. Chen, T.-J. Liu, T. Fan, E.-Y. Tsou, and C. Tiu, An effective mixing for lithium ion battery slurries, Adv. Chem. Eng. Sci., 4, 515-518 (2014).  https://doi.org/10.4236/aces.2014.44053
  15. K. Y. Cho, Y. I. Kwon, J. R. Youn, and Y. S. Song, Evaluation of slurry characteristics for rechargeable lithium-ion batteries, Mater. Res. Bull., 48(8), 2922-2926 (2013).  https://doi.org/10.1016/j.materresbull.2013.04.026
  16. D. Ma, Z. Cao, and A. Hu, Si-based anode materials for Li-ion batteries: A mini review, Nano-Micro Lett., 6, 347-358 (2014).  https://doi.org/10.1007/s40820-014-0008-2
  17. Y. So, H.-S. Bae, Y. Y. Kang, J. Y. Chung, N. K. Park, J. Kim, H.-T. Jung, J. C. Won, M.-H. Ryou, and Y. H. Kim, Eco-friendly water-processable polyimide binders with high adhesion to silicon anodes for lithium-ion batteries, Nanomaterials, 11(12), 3164 (2021). 
  18. W. Tang, X. Yin, S. Kang, Z. Chen, B. Tian, S. L. Teo, X. Wang, X. Chi, K. P. Loh, H. W. Lee, and G. W. Zheng, Lithium silicide surface enrichment: A solution to lithium metal battery, Adv. Mater., 30(34), 1801745 (2018). 
  19. S. S. Zhang, Problem, status, and possible solutions for lithium metal anode of rechargeable batteries, ACS Appl. Energy Mater., 1(3), 910-920 (2018).  https://doi.org/10.1021/acsaem.8b00055
  20. S. Kennedy, J.-T. Kim, Y. M. Lee, I. Phiri, and S.-Y. Ryou, Upgrading the properties of ceramic-coated separators for lithium secondary batteries by changing the mixing order of the water-based ceramic slurry components, Batteries, 8(7), 64 (2022). 
  21. K. M. Kim, W. S. Jeon, I. J. Chung, and S. H. Chang, Effect of mixing sequences on the electrode characteristics of lithium-ion rechargeable batteries, J. Power Sources, 83(1-2), 108-113 (1999).  https://doi.org/10.1016/S0378-7753(99)00281-5
  22. Y. Komoda, K. Ishibashi, K. Kuratani, R. Hidema, H. Suzuki, and H. Kobayashi, Rheological interpretation of the structural change of LiB cathode slurry during the preparation process, JCIS Open, 5, 100038 (2022). 
  23. A. Kraytsberg and Y. Ein-Eli, Conveying advanced Li-ion battery materials into practice the impact of electrode slurry preparation skills, Adv. Energy Mater., 6(21), 1600655 (2016). 
  24. E. Ligneel, B. Lestriez, A. Hudhomme, and D. Guyomard, Effects of the solvent concentration (solid loading) on the processing and properties of the composite electrode, J. Electrochem. Soc., 154, A235 (2007). 
  25. H. Morishima, H. Inagaki, H. Saruwatari, S. Matsuno, Y. Fujita, and N. Takami, Method of producing electrode and method of producing nonaqueous electrolyte battery, US Patent US9178211B2 (2015). 
  26. H. Popko, R. Popko, and H. Komsta, The investigation of the influence of basic parameters on energy consumption of homogenization process, Acta Alimentaria Polonica, 14(38)(2), 165-174 (1988). 
  27. K. Mulia, A. Safiera, I. Pane, and E. Krisanti, Effect of high speed homogenizer speed on particle size of polylactic acid, J. Phys.: Conf. Ser., 1198, 062006 (2019). 
  28. T. Detloff, T. Sobisch, and D. Lerche, Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation, Part. Part. Syst. Charact., 23(2), 184-187 (2006).  https://doi.org/10.1002/ppsc.200601028
  29. W. Wanyi, L. Lu, H. Zehan, and X. Xinan, Comparison of emulsifying characteristics of different macromolecule emulsifiers and their effects on the physical properties of lycopene nanoemulsions, J. Dispers. Sci. Technol., 41(4), 618-627 (2020).  https://doi.org/10.1080/01932691.2019.1610421
  30. A. Zielinska, N. R. Ferreira, A. Durazzo, M. Lucarini, N. Cicero, S. E. Mamouni, A. M. Silva, I. Nowak, A. Santini, and E. B. Souto, Development and optimization of alpha-pinene-loaded solid lipid nanoparticles (SLN) using experimental factorial design and dispersion analysis, Molecules, 24(15), 2683 (2019). 
  31. S. Choi, J. Kim, M. Eom, X. Meng, and D. Shin, Application of a carbon nanotube (CNT) sheet as a current collector for all-solid-state lithium batteries, J. Power Sources, 299, 70-75 (2015).  https://doi.org/10.1016/j.jpowsour.2015.08.081
  32. J.-H. Kim, S. C. Woo, M.-S. Park, K. J. Kim, T. Yim, J.-S. Kim, and Y.-J. Kim, Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage, J. Power Sources, 229, 190-197 (2013).  https://doi.org/10.1016/j.jpowsour.2012.12.024
  33. U. Eitner and L. C. Rendler, The mechanical theory behind the peel test, Energy Procedia, 55, 331-335 (2014).  https://doi.org/10.1016/j.egypro.2014.08.096
  34. H. Hadavinia, L. Kawashita, A. Kinloch, D. Moore, and J. G. Williams, A numerical analysis of the elastic-plastic peel test, Eng. Fract. Mech., 73(16), 2324-2335 (2006).  https://doi.org/10.1016/j.engfracmech.2006.04.022
  35. S.-R. Kim and H.-Y. Lee, Measurement of Adhesion, J. Adhes. Interface, 4(3), 21-32 (2003). 
  36. S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, Study on polymer binders for highcapacity SiO negative electrode of Li-ion batteries, J. Phys. Chem. C, 115(27), 13487-13495 (2011).  https://doi.org/10.1021/jp201691g
  37. S. Jaiser, M. Muller, M. Baunach, W. Bauer, P. Scharfer, and W. Schabel, Investigation of film solidification and binder migration during drying of Li-ion battery anodes, J. Power Sources, 318, 210-219 (2016).  https://doi.org/10.1016/j.jpowsour.2016.04.018
  38. M. Duquesnoy, T. Lombardo, M. Chouchane, E. Primo, and A. A. Franco, Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning, J. Power Sources, 480, 229103 (2020). 
  39. B. Vijayaraghavan, D. R. Ely, Y.-M. Chiang, R. Garcia-Garcia, and R. E. Garcia, An analytical method to determine tortuosity in rechargeable battery electrodes, J. Electrochem. Soc., 159(5), A548 (2012).