DOI QR코드

DOI QR Code

Physiological and morpho-anatomical analyses of hyperhydric Arabidopsis thaliana influenced by media components

  • Nurashikin Kemat (Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia) ;
  • Richard G.F. Visser (Plant Breeding, Wageningen University and Research) ;
  • Frans A. Krens (Plant Breeding, Wageningen University and Research)
  • Received : 2023.11.05
  • Accepted : 2023.12.11
  • Published : 2023.12.19

Abstract

Hyperhydricity is a physiological anomaly that significantly affects the growth and proliferation rate of crops cultivated by tissue culture techniques. To better understand the mechanisms that govern hyperhydricity incidence, we examined the effects of several media components, particularly cytokinin and gelling agents. These elements were found to be influential in both in vitro propagation and the development of hyperhydricity. Our study revealed that Arabidopsis thaliana seedlings had a greater manifestation of hyperhydricity symptoms when exposed to high cytokinin concentrations compared with the control. The presence of gelrite led to the manifestation of hyperhydric symptoms by elevated water build-up in the apoplast. The phenomenon of stomata closure was observed in the hyperhydric leaves, resulting in an increased ability to retain water and a decrease in the transpiration rates when compared to their respective control leaves. Additionally, histological examinations of the cross sections of hyperhydric leaves revealed an irregular cellular arrangement and large intercellular spaces. Furthermore, hyperhydric seedlings displayed impaired cuticular development in comparison to their normal seedlings.

Keywords

Acknowledgement

We would like to express our gratitude to Dr. G.J.M (Geert-Jan) de Klerk for his valuable and constructive recommendations during the design and development stages of this research project. We also want to express our heartfelt gratitude to Luo Rong and Ziqi Zeng for their dedicated efforts and valuable contributions on this research topic. This manuscript is a reworked version of chapter 2 and 6 from the first authors PhD thesis (Kemat 2020). This research was funded in part by the Dutch Ministry of Economic Affairs, TKI-TU grant KV1310-067 and by Ministry of Higher Education Malaysia and Universiti Putra Malaysia.

References

  1. Abdoli M, Moieni A, Dehghani H (2007) Effects of cultivar and agar concentration on in vitro shoot organogenesis and hyperhydricity in sunflower (Helianthus annuus L.). Pakistan J bot 39(1):31-35
  2. Apostolo NM, Llorente BE (2000) Anatomy of normal or hyperhydric leaves of shoots of in vitro grown Simmondsia cinensis (Link) Schn. In Vitro Cell Dev Biol Plant 36:243-249 https://doi.org/10.1007/s11627-000-0045-z
  3. Aremu AO, PlackovaL, Bairu MW, Novak O, PlihalovaL, Dolezal K, Finnie JF, Van Staden J (2014) How does exogenously applied cytokinin type affect growth and endogenous cytokinins in micropropagated Merwilla plumbea?. Plant Cell Tiss Organ Cult 118:245-256 https://doi.org/10.1007/s11240-014-0477-5
  4. Bakir Y, Eldem V, Zararsiz G, Unver T (2016) Global transcriptome analysis reveals differences in Gene expression patterns between nonhyperhydric and hyperhydric peach leaves. The Plant Genome 9:1-9 https://doi.org/10.3835/plantgenome2015.09.0080
  5. Barbosa LMP, De Paiva Neto VP, Dias LLC, Festucci-Buselli RA, Alexandre RS, Iarema L, Finger FL, Otoni WC (2013) Biochemical and morpho-anatomical analyses of strawberry vitroplants hyperhydric tissues affected by BA and gelling agents. Revista Ceres 60(2):152-160 https://doi.org/10.1590/S0034-737X2013000200002
  6. Buah JN, Kawamitsu Y, Sato S, Murayama S (1999) Effects of different types and concentrations of gelling agents on the physical and chemical properties of media and the growth of Banana (Musa spp.) in vitro. Plant Prod Sci 2(2):138-145 https://doi.org/10.1626/pps.2.138
  7. Casanova E, Moysett L, Trillas MI (2008) Effects of agar concentration and vessel closure on the organogenesis and hyperhydricity of adventitious carnation shoots. Biol Plant 52:1-8 https://doi.org/10.1007/s10535-008-0001-z
  8. Chakrabarty D, Park SY, Ali MB, Shin KS, Paek KY (2006) Hyperhydricity in apple: ultrastrucutural and physiological aspects. Tree Physiol 26:377-388 https://doi.org/10.1093/treephys/26.3.377
  9. De Carvalho DC, Da Silva ALL, Schuck MR, Purcino M, Tanno GN, Biasi LA (2013) Fox Grape cv. Bordo (Vitis labrusca L.) and Grapevine cv. Chardonnay (Vitis vinifera L.) cultivated in vitro under different carbohydrates, amino acids and 6-benzylaminopurine levels. Braz Arch Biol Technol 56(2):191-201
  10. Deberg P, Harbaoui Y, Lemeur R (1981) Mass propagation of globe artichoke (Cyan scolymus): Evaluation of different hypothesis to overcome vitrification with special reference to water potential. Physiol Plant. 53: 181-187 https://doi.org/10.1111/j.1399-3054.1981.tb04130.x
  11. Debergh PC (1983) Effects of agar brand and concentration on the tissue culture medium. Physiol Plant 59:270-276 https://doi.org/10.1111/j.1399-3054.1983.tb00770.x
  12. Dewir YH, Chakrabarty D, Ali MB, Hahna EJ, Paek KY (2006) Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ Exp Bot 58:93-99 https://doi.org/10.1016/j.envexpbot.2005.06.019
  13. Ghashghaie J, Brenckmann F, Savgier H (1991) Effect of agar concentration on water stress and growth of rose plant cultured in vitro. Physiol Plant 82:73-78 https://doi.org/10.1111/j.1399-3054.1991.tb02904.x
  14. Gribble K, Sarafis V, Conroy J (2003) Vitrified plants: towards an understanding of their nature. Phytomorphology 53:1-10
  15. Gupta DS, Prasad VSS (2010) Shoot multiplication kinetics and hyperhydric status of regenerated shoots of gladiolus in agar-solidified and matrix-supported liquid cultures. Plant Biotechnol Rep 4:85-94
  16. Ivanova M, Van Staden J (2008) Effect of ammonium ions and cytokinins on hyperhydricity and Multiplication rate of in vitro regenerated shoots of Aloe polyphylla. Plant Cell Tiss Organ Cult 92:227-231 https://doi.org/10.1007/s11240-007-9311-7
  17. Ivanova M, Van Staden J (2010) Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tiss Organ Cult 104(1):13-21
  18. Jausoro V, Llorente BE, Apostolo NM (2010) Structural differences between hyperhydric and normal in vitro shoots of Handroanthus impetiginosus (Mart. ex DC) Mattos (Bignoniaceae). Plant Cell Tiss Organ Cult 1-9
  19. Kadota M, Niimi Y (2003) Effects of cytokinin types and their concentrations on shoot proliferation and hyperhydricity in in vitro pear cultivar shoots. Plant Cell Tiss Organ Cult 72:261-265 https://doi.org/10.1023/A:1022378511659
  20. Kataeva NV, Alexandrova IG, Butenko RG, Dragavtceva EV (1991) Effect of applied and internal hormones on vitrification and apical necrosis of different plant cultured. Plant Cell Tiss Organ Cult 27:149-154 https://doi.org/10.1007/BF00041283
  21. Kemat N, Visser RGF, Krens FA (2021) Hypolignification: A Decisive Factor in the Development of Hyperhydricity. Plants 10(12):2625
  22. Kemat N (2020) Improving the quality of tissue-cultured plants by fixing the problems related to an inadequate water balance, hyperhydricity, PhD, Wageningen University, The Netherlands, 2020. ISBN 9789463953436-187
  23. Kevers C, Prat R, Gaspar T (1987) Vitrification of carnation in vitro: changes in cell wall mechanical properties, cellulose and lignin content. Plant Growth Regul 5:59-66 https://doi.org/10.1007/BF00035020
  24. Krikorian AD (1995) Hormones in tissue culture and micro-propagation. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht 774-796
  25. Kusumoto M (1980) Effects of coconut milk, agar and sucrose concentrations and media pH on the proliferation of Cymbidium protocorm-like bodies cultured in vitro. J Soc Hort Sci 48:503-509 https://doi.org/10.2503/jjshs.48.503
  26. Liu M, Jiang F, Kong X, Tian J, Wu Z, Wu Z (2017) Effects of multiple factors on hyperhydricity of Allium sativum L. Sci Hortic 217:285-296 https://doi.org/10.1016/j.scienta.2017.02.010
  27. Louro RP, Dos Santos AV, Machado RD (1999) Ultrastructure of Eucalyptus grandis_Eucalyptus urophylla. I. Shoots cultivated in vitro in multiplication and elongation- rooting media. Int J Plant Sci 160:217-227 https://doi.org/10.1086/314118
  28. Mayor ML, Nestares G, Zorzoli R, Picardi LA (2003) Reduction of hyperhydricity in sunflower tissue culture. Plant Cell Tiss Organ Cult 72:99-103 https://doi.org/10.1023/A:1021216324757
  29. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  30. Olmos E, Hellin E (1998) Ultrastructural differences of hyperhydric and normal leaves from regenerated carnation plants. Sci Hortic 75:91-101 https://doi.org/10.1016/S0304-4238(98)00096-X
  31. Picoli EAT, Paiva EAS, Xavier AI, Aguiar, RM, Carolino SMB, Fari MG, Otoni WC (2008) Ultrastructural and biochemical aspects of normal and hyperhydric Eucalypt. Int J Hortic Sci Technol 14(3):61-69 https://doi.org/10.31421/IJHS/14/3/805
  32. Raskin I (1983) A method for measuring leaf volume, density, thickness, and internal gas volume. HortScience 18, 698-699 https://doi.org/10.21273/HORTSCI.18.5.698
  33. Sevcikova H, Lhotakova Z, Hamet J, Lipavska H (2019) Mixotrophic in vitro cultivations: The way to go astray in plant physiology. Physiol Plant 167: 365-377 https://doi.org/10.1111/ppl.12893
  34. Singha S, Townsend, EC, Oberly, GH (1985) Mineral nutrient status of crabapple and pear shoots cultured in vitro on varying concentrations of three commercial agars. J Am Soc Hortic Sci 110(3):407-411 https://doi.org/10.21273/JASHS.110.3.407
  35. Tanaka T, Tanaka H, Machida C, Watanabe M, Yasunori M (2004) A new method for rapid Visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J 38(1):139-146 https://doi.org/10.1046/j.1365-313X.2003.01946.x
  36. Terry ME, Bonner BA (1980) An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of indoleacetic acid-induced growth. Plant Physiol 66:321-325
  37. Van den Dries N, Gianni S, Czerednik A, Krens FA, De Klerk GJM (2013) Flooding of the apoplast is a key factor in the development of hyperhydricity. J Exp Bot 64(16):5221-5230 https://doi.org/10.1093/jxb/ert315
  38. Wu Z, Chen LJ, Long YJ (2009) Analysis of ultrastructure and reactive oxygen species of hyperhydric Garlic (Allium sativum L.) shoot. In Vitro Cell Dev Biol Plant 45:483-490 https://doi.org/10.1007/s11627-008-9180-8
  39. Yu Y, Zhao Y-Q, Zhao B, Ren S, Guo Y-D (2011) Influencing factors and structural characterization of hyperhydricity of in vitro regeneration in Brassica oleracea var. italica. Can J Plant Sci 91(1), 159-165 https://doi.org/10.4141/cjps10034
  40. Zd'arska M, Zatloukalova P, Benitez M, Sedo O, Potesil D, Novak O, Svacinova J, Pesek B, Malbeck J, Vasickova J, Zdrahal Z, Hejatko J (2013) Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiol 161:918-930 https://doi.org/10.1104/pp.112.202853
  41. Zhang S, Xing L, Zhang L, Xu H (2012) Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Ind Crops Prod 40(1):27-32 https://doi.org/10.1016/j.indcrop.2012.02.016