DOI QR코드

DOI QR Code

Efficient plant regeneration through callus induction from the hypocotyl of Perilla frutescens L var. Dayu

'다유들깨'품종의 하배축에서 캘러스를 통한 고효율 식물재분화

  • Ruyue Xu (Department of Biotechnology, Jeju National University) ;
  • Ji-Hi Son (Department of Biotechnology, Jeju National University) ;
  • Hong-Gyu Kang (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Hyeon-Jin Sun (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Hyo-Yeon Lee (Department of Biotechnology, Jeju National University)
  • 서여월 (제주대학교 생명공학과) ;
  • 손지희 (제주대학교 생명공학과) ;
  • 강홍규 (제주대학교 아열대원예산업연구소) ;
  • 선현진 (제주대학교 아열대원예산업연구소) ;
  • 이효연 (제주대학교 생명공학과)
  • Received : 2023.11.19
  • Accepted : 2023.11.30
  • Published : 2023.12.13

Abstract

This study was conducted to establish an efficient plant regeneration system in 'Dayu', a Korean variety of Perilla frutescens developed for seed oil production, in conjunction with the previously studied variety 'Namcheon'. The healthiest callus was formed on the hypocotyl explants cultured on a medium containing 0.1 mg/L NAA and 0.5 mg/L BA, outperforming the leaf and cotyledon samples. In both dark and long-day conditions, Dayu consistently exhibited significantly higher shoot regeneration rates compared with Namcheon. The highest shoot regeneration rates in Dayu were observed from the hypocotyl explants cultured on 0.1 mg/L NAA and 0.5 mg/L BA media, with shoot regeneration rates of 84.4% and 86.7% under dark and long-day conditions, respectively. Various combinations of plant growth regulators were tested to establish the optimal shoot regeneration conditions for Dayu hypocotyl explants. The results demonstrated that the highest shoot regeneration rate (90%) was achieved when 0.5 mg/L of BA was added to the medium without NAA. Among the regenerated shoots, 70.5% were normal plants, while 19.3% were abnormal. The addition of NAA or an increase in its concentration led to a higher occurrence of abnormal plants. After the regenerated shoots were transferred to 1/2 MS medium, roots were observed within 10-15 days. By day 30, they had developed into complete plants. The results obtained from the regeneration experiments with the perilla variety Dayu can valuably inform molecular breeding reliant on transformation techniques such as genome-editing and genetic modification technology.

본 연구는 종유용 들깨 품종인 다유들깨'의 유식물체에서 캘러스 유도를 통한 고효율의 재분화 체계를 구축하기 위해 수행되었고 이미 보고된 바 있는'남천들깨'와 함께 연구를 진행하였다. 캘러스는 잎, 자엽, 하배축 중 0.1 mg/L NAA와 0.5 mg/L BA가 첨가된 배지에서 배양된 다유들깨의 하배축에서 가장 건강한 캘러스가 형성되었다. 암상태와 장일조건에서 각각 캘러스를 유도한 후 신초 재분화를 유도했을 때 모든 조건에서 남천들깨보다 다유들깨가 재분화율이 월등하게 높았다. 또한 0.1 mg/L NAA와 0.5 mg/L BA 배지의 암상태와 장일조건에서 다유들깨 하배축의 신초 재분화율은 각각 86.7%와 84.4%로 두 조건 간 차이는 낮은 것으로 조사되었지만 전체적으로 암조건에 비해 장일조건에서 유도된 캘러스의 재분화 빈도가 높았다. 본 연구에서 다유들깨의 하배축으로부터 고효율의 재분화 조건을 확립하기 위해 다양한 식물생장호르몬 조합실험을 수행한 결과 NAA 없이 0.5 mg/L BA 만 첨가된 배지에서 가장 높은 90%의 재분화율을 보여 주었으며 이 중 정상적인 식물체가 70.5% 와 비정상적인 식물체가 19.3%로 조사되었고 NAA가 첨가되거나 농도가 높아질수록 비정상 식물체의 출현율이 높아졌다. 정상적으로 재분화된 신초는 1/2 MS 배지로 옮긴 후 10~15일 후에 뿌리가 관찰되었고 30일 후에는 완전한 식물체로 성장하였다. 본 연구에서 확립된 다유들깨 하배축을 이용한 재분화체계는 지금까지 보고된 다른 들깨 품종들의 재분화 체계에 비해 재분화 효율이 높았으며 향후 들깨에서 조직배양과 형질전환에 의존하는 유전자편집 등의 분자육종 분야에 유용하게 이용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2019R1A6A1A11052070).

References

  1. Ahmed HM (2018) Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules 24:102
  2. Asif M (2012) Phytochemical study of polyphenols in Perilla Frutescens as an antioxidant. Avicenna J Phytomed 2:169-178
  3. Bhatia S, Bera T (2015) "Somatic embryogenesis and organogenesis," in modern applications of plant biotechnology in pharmaceutical sciences. eds. Bhatia S, Sharma K, Dahiya R, Bera T (Boston: Academic Press) 209-230
  4. Ha TJ, Lee JH, Lee MH, Lee BW, Kwon HS, Park CH, Shim KB, Kim HT, Beak IY, Jang DS (2012) Isolation and identification of phenolic compounds from the seeds of Perilla frutescens (L.) and their inhibitory activities against α-glucosidase and aldose reductase. Food Chem 135:1397-1403 https://doi.org/10.1016/j.foodchem.2012.05.104
  5. Han HS, Park JH, Choi HJ, Son JH, Kim YH, Kim S, Choi C (2004) Biochemical analysis and physiological activity of perilla leaves. Korean J Food Culture 19:94-105
  6. Heci Y (2001) Valuable ingredients from herb perilla: A mini review. Innov Food Technol 29:32-33
  7. Hong YP, Kim SY, Choi WY (1986) Postharvest changes in quality and biochemical components of perilla leaves. Korean J Food Sci Technol 18:255-258
  8. Hou SW, Jia JF (2005) In vitro regeneration of Perilla frutescens from hypocotyl and cotyledon explants. Biol Plant 49:129-132 https://doi.org/10.1007/s10535-005-0132-4
  9. Huang S, Nan Y, Chen G, Ning N, Du Y, Lu D, Yang Y, Meng F, Yuan L (2023) The role and mechanism of Perilla frutescens in cancer treatment. Molecules 28:5883
  10. Jung CS, Kwon YC, Kim BJ, Han WY, Kwack YH, Lim MS (1998) A New vegetable perilla variety "Namcheondlkkae" characterized by short stem and middle-large leaf with high antioxidizing activity. Kor J Breed Sci 30:403-403
  11. Jung SH (1999) Changes of RNA and protein during callus induction and plant regeneration from Pefilla fruescens. J Life Sci 9:29-34
  12. Kaur N, Chugh V, Gupta AK (2014) Essential fatty acids as functional components of foods-a review. J Food Sci Tech 51:2289-2303 https://doi.org/10.1007/s13197-012-0677-0
  13. Kim HU, Lee KR, Jeon I, Jung HE, Heo JB, Kim TY, Chen GQ (2019). Fatty acid composition and oil content of seeds from perilla (Perilla frutescens (L.) var. frutescens) germplasm of Republic of Korea. Genet Resources Crop Evol 66:1615-1624
  14. Kim JA, Choi HJ, Park SK, Kim DU (1993) Callus induction and plant regeneration from leaf segments and cotyledonary explants of Perilla frutescens. J Plant Biotechnol 20:47-50
  15. Kim KH, Lee YH, Kim D, Park YH, Lee JY, Hwang YS, Kim YH (2004) Agrobacterium-mediated genetic transformation of Perilla frutescens. Plant Cell Reports 23:386-390 https://doi.org/10.1007/s00299-004-0825-8
  16. Kim KM, Lee HS (2007) High frequency plant regeneration from the cultures of cotyledon explants of perilla (Perilla frutescens L.). J Plant Biotechnol 34:69-73 https://doi.org/10.5010/JPB.2007.34.1.069
  17. Kim MY, Kim JI, Kim SW, Kim S, Oh E, Lee J, Lee E, Lee, MH (2022) Changes in antioxidant compound and activities of perilla seed, flower and leaf (Perilla frutescens) according to extraction method and solvent. Kor Soc Food Sci Nutr Proceedings 547
  18. Lee HS, Lee JI, Ryu SN, Hur HS (1994) Effect of low temperature and plant growth regulators on callus induction and plant regeneration in anther culture of perilla. Kor J Breed Sci 26:345-352
  19. Lee JY, Yu SH, Kim YH, Hur HS, Lee BK, Lee SC (2003) Efficient in vitro shoot regeneration of perilla (Perilla frutescens) from cotyledon, hypocotyl and leaf explants. Kor J Breed Sci 35:237-240
  20. Lee M, Jung C, Oh K, Park C, Kim D, Choi J, Nam S (2011) A new perilla cultivar for edible seed 'Dayu' with high oil content. Kor J Breed Sci 43:616-619
  21. Long Y, Yang Y, Pan G, Shen Y (2022) New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci 13: 926752
  22. Moon JG, Choo BK, Doo HS, Kwon TH, Yanh MS, Ryu JH (2002) Effect of growth regulators on plant regeneration from the cotyledon explant in Oriental Melon (Cucumis melo L.). Kor J Plant Tiss Cult 27:1-6
  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  24. Pressi G, Rigillo G, Governa P, Borgonetti V, Baini G, Rizzi R, Guarnerio C, Bertaiola O, Frigo M, Merlin M, Paltrinieri S, Zambonin R, Pandolfo S, Biag M (2023) A novel Perilla frutescens (L.) Britton cell-derived phytocomplex regulates keratinocytes inflammatory cascade and barrier function and preserves vaginal mucosal integrity in vivo. Pharmaceutics 15:240
  25. Siddique AB, Islam S (2018) Effect of light and dark on callus induction and regeneration in tobacco (Nicotiana tabacum L.) Bangladesh J Bot 44:643
  26. Skoog F, Miller CO (1965) Chemical regulation of growth and organ formation in plant tissues cultures in vitro. In Molecular and Cellular Aspects of Development (Bell, E., ed.). New York: Harper & Row, pp 481-494
  27. Tariq Hossain HMM, Kim YH, Lee YS (2010) The apical bud as a novel explant for high-frequency in vitro plantlet regeneration of Perilla frutescens L. Britton. Plant Biotech Rep 4:229-235 https://doi.org/10.1007/s11816-010-0141-4
  28. Yu Y, Qin W, Li Y, Zhang C, Wang Y, Yang Z, Ge Z, Li F (2019) Red light promotes cotton embryogenic callus formation by influencing endogenous hormones, polyamines and antioxidative enzyme activities. Plant Growth Regul 87:187-199 https://doi.org/10.1007/s10725-018-0461-x
  29. Zenser N, Ellsmore A, Leasure C, Callis J (2001) Auxin modulates the degradation rate of aux/Iaa proteins. Proc Natl Acad Sci 98:11795-11800 https://doi.org/10.1073/pnas.211312798
  30. Zhang T (2007) In vitro flowering of Perilla frutescens. In Vitro Cell Dev Biol - Plant 43:91-94 https://doi.org/10.1007/s11627-007-9038-5
  31. Zhang T, Wang XY, Cao ZY (2005) Plant regeneration in vitro directly from cotyledon and hypocotyl explants of Perilla frutescens and their morphological aspects. Biol Plant 49: 423-426 https://doi.org/10.1007/s10535-005-0020-y