DOI QR코드

DOI QR Code

Recent Development of Thermo-chemical Conversion Processes with Fluidized Bed Technologies

유동층 공정을 이용한 열화학적 전환 공정의 최신 개발 동향

  • Hyun Jun, Park (Department of Environment and Energy, Jeonbuk National University) ;
  • Seung Seok, Oh (Department of Environment and Energy, Jeonbuk National University) ;
  • Olusola Nafiu, Olanrewaju (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Jester Lih Jie, Ling (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Chul Seung, Jeong (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Han Saem, Park (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • See Hoon, Lee (Department of Environment and Energy, Jeonbuk National University)
  • 박현준 (전북대학교 환경에너지융합학과) ;
  • 오승석 (전북대학교 환경에너지융합학과) ;
  • ;
  • ;
  • 정철승 (전북대학교 자원에너지공학과) ;
  • 박한샘 (전북대학교 자원에너지공학과) ;
  • 이시훈 (전북대학교 환경에너지융합학과)
  • Received : 2022.07.21
  • Accepted : 2022.08.24
  • Published : 2023.02.01

Abstract

Increasing of energy demand due to the rapid growth of global population and the development of world economy has inevitably resulted in the continuously increase of fossil fuel usage in the world. However, highly dependence on fossil fuels has necessarily brought about critical environmental issues and challenges such as severe air pollutions and rapid global warming. In order to settle these environmental and energy problems, clean energy generations in the conventional combustion processes have widely adapted in the world. In particular, novel thermochemical conversion processes such as pyrolysis and gasification have rapidly been applied for generating clean energy. Fluidized bed technologies having advantages such as various fuel use, easy continuous operation, high heat and material transfer, isothermal operation, and lower operation temperature are widely adopted and used because they are suitable for thermochemical energy conversion. The latest research trends and important findings in the thermo-chemical conversion process with fluidized bed technologies are summarized in this review. Also, the need for research such as layered materials and substances to reduce fine dust (biomass, natural resource waste, etc.) was suggested. Through this, it is intended to increase interest and understanding in fluidized bed technology and to present directions for solving future challenges in fluidized bed process technology development.

지속적인 인구의 증가와 경제의 발전으로 인한 전세계 에너지 수요의 증가는 화석연료의 이용을 끊임없이 증가시키고 있다. 그러나 화석연료에 대한 높은 의존도는 환경오염과 급격한 지구온난화라는 새로운 문제를 야기시켰다. 이의 해결을 위해 전통적인 연소에서 벗어나 열분해, 가스화와 같은 새로운 열화학적 전환 공정을 이용한 청정 에너지 생산이 빠르게 확산되고 있다. 특히 다양한 연료의 이용, 쉬운 연속조업, 높은 열 및 물질전달, 등온 조업, 낮은 조업 온도 등의 특성들을 가지는 유동층 공정은 열화학적 에너지 전환에 적합하기 때문에 널리 채택되어 이용되고 있다. 이에 본 총설에서는 열분해, 가스화, 연소에 적용된 최근의 유동층 공정 연구의 중요한 결과들을 정리하였다. 더불어 유동층 열화학적 공정에서 주로 연구되지 않은 층물질, 미세먼지 저감을 위한 물질(바이오매스, 천연 자원 폐기물 등)과 같은 연구의 필요성을 제시하였다. 이를 통해 유동층 기술에 대한 관심과 이해를 높이고, 유동층 공정 기술 개발의 미래 과제를 해결하기 위한 방향을 제시하고자 한다.

Keywords

References

  1. Lee, R., Gwak, Y. R., Sohn, J. M. and Lee, S. H., "The Prediction of CO2 Emissions in Domestic Power Generation Sector Between 2020 and 2030 for Korea," 32(5), 855-873(2021).
  2. Seo, M. W., Lee, S. H., Nam, H., Lee, D., Tokmurzin, D., Wang, S. and Park, Y.-K., "Recent Advances of Thermochemical Conversion Processes for Biorefinery," Bioresour. Technol., 343, 126109 (2022).
  3. Tumsa, T. Z., Lee, S. H., Normann, F., Andersson, K., Ajdari, S. and Yang, W., "Concomitant Removal of NOx and SOx from a Pressurized Oxy-fuel Combustion Process Using a Direct Contact Column," Chem. Eng. Res. Des., 131, 626-634(2018). https://doi.org/10.1016/j.cherd.2017.11.035
  4. Lee, S. H., Kim, D. W., Lee, J. M. and Bae, Y. C., "Evaluation of Limestone for in-situ Desulfurization in CFB Boilers," Korean Chem. Eng. Res., 57(6), 853-860(2019).
  5. Kim, Y. B., Kang, S. Y., Seo, S. B., Keel, S. I., Yun, J. H. and Lee, S. H., "The Attrition and Calcination Characteristics of Domestic Limestones for in-situ Desulfurization in Circulating Fluidized Bed Boilers," 57(5), 687-694(2019).
  6. Fuchs, J., Schmid, J. C., Muller, S. and Hofbauer, H., "Dual Fluidized Bed Gasification of Biomass with Selective Carbon Dioxide Removal and Limestone as Bed Material: A Review," Renew. Sustain. Energy Rev., 107, 212-231(2019). https://doi.org/10.1016/j.rser.2019.03.013
  7. Gholizadeh, M., Hu, X. and Liu, Q., "A Mini Review of the Specialties of the Bio-oils Produced from Pyrolysis of 20 Different Biomasses," Renew. Sustain. Energy Rev., 114, 109313(2019).
  8. Seo, S. B., Go, E. S., Ling, J. L. J. and Lee, S. H., "Techno-economic Assessment of a Solar-assisted Biomass Gasification Process," Renew. Energy, 193, 23-31(2022). https://doi.org/10.1016/j.renene.2022.05.033
  9. Seo, S. B., Ahn, H., Go, E. S., Ling, L. J. J., Siambun, N. J., Park, Y.-K. and Lee, S. H., "Evaluation of the Solar Thermal Storage of Fluidized Bed Materials for Hybrid Solar Thermo-chemical Processes," Biomass Convers. Biorefin., 1-10(2022).
  10. Ling, J., Kim, H., Go, E., Oh, S., Park, H., Jeong, C. and Lee, S., "Analysis of Operational Characteristics of Biomass Oxygen Fuel Circulating Fluidized Bed Combustor with Indirect Supercritical Carbon Dioxide Cycle," Energy Convers. Manag., 259, 115569(2022).
  11. Kim, H. W., Seo, S. B., Kang, S. Y., Go, E. S., Oh, S. S., Lee, Y., Yang, W. and Lee, S. H., "Effect of Flue Gas Recirculation on Efficiency of an Indirect Supercritical CO2 Oxy-fuel Circulating Fluidized Bed Power Plant," Energy & fuels, 227, 120487(2021).
  12. Mallick, D., Mahanta, P. and Moholkar, V. S., "Co-gasification of Biomass Blends: Performance Evaluation in Circulating Fluidized Bed Gasifier," Energy Fuels, 192, 116682(2020).
  13. Lee, S. H., Lee, T. H., Jeong, S. M. and Lee, J. M., "Economic Analysis of a 600 mwe Ultra Supercritical Circulating Fluidized Bed Power Plant Based on Coal Tax and Biomass co-combustion Plans," Renew. Energy, 138, 121-127(2019). https://doi.org/10.1016/j.renene.2019.01.074
  14. Lee, J.-M., Kim, D.-W., Kim, J.-S., Na, J.-G. and Lee, S.-H., "Co-Combustion of Refuse Derived Fuel with Korean Anthracite in a Commercial Circulating Fluidized Bed Boiler," Energy & fuels, 35(7), 2814-2818(2010).
  15. Gomez Barea, A. and Leckner, B., "Modeling of Biomass Gasification in Fluidized Bed," Prog. Energy Combust. Sci., 36(4), 444-509(2010). https://doi.org/10.1016/j.pecs.2009.12.002
  16. Seo, M. W., Kim, S. D., Na, J. G. and Lee, S. H., "Pyrolysis, Partial Oxidation, and Combustion Characteristics of Micro Algae," Korean Chem. Eng. Res., 47(6), 734-739(2009).
  17. Demirbas, A., "Combustion Characteristics of Different Biomass Fuels," Prog. Energy Combust. Sci., 30(2), 219-230(2004). https://doi.org/10.1016/j.pecs.2003.10.004
  18. Lee, S. H., Kim, J.-M., Kim, J.-S., Choe, J.-H. and Kim, S.-D., "Combustion Characteristics of Anthracite Coal in the D CFB boiler," Korean Chem. Eng. Res., 38(4), 516-516(2000).
  19. Lee, J. R., Kim, Y. H. and Won, Y. S., "Solid-state Reaction Between MoS2 and MoO3 in a Fluidized Bed Reactor," Korean J. Chem. Eng., 38(9), 1791-1796(2021). https://doi.org/10.1007/s11814-021-0797-1
  20. Salehi Asl, M., Azhgan, S. and Movahedirad, S., "Some General Aspects of a Gas-solid Fluidized Bed Using Digital Image Analysis," Korean J. Chem. Eng., 35(2), 613-620(2018). https://doi.org/10.1007/s11814-017-0291-y
  21. Usmani, Z., Sharma, M., Awasthi, A. K., Sivakumar, N., Lukk, T., Pecoraro, L., Thakur, V. K., Roberts, D., Newbold, J. and Gupta, V. K., "Bioprocessing of Waste Biomass for Sustainable Product Development and Minimizing Environmental Impact," Bioresour. Technol., 322, 124548(2021).
  22. Collard, F. X. and Blin, J., "A Review on Pyrolysis of Biomass Constituents: Mechanisms and Composition of the Products Obtained from the Conversion of Cellulose, Hemicelluloses and Lignin," Renew. Sustain. Energy Rev., 38, 594-608(2014). https://doi.org/10.1016/j.rser.2014.06.013
  23. Kan, T., Strezov, V. and Evans, T. J., "Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters," 57, 1126-1140(2016).
  24. Balat, M., Balat, M., Kirtay, E. and Balat, H., "Main Routes for the Thermo-conversion of Biomass Into Fuels and Chemicals. Part 1: Pyrolysis Systems," Energy Convers. Manage., 50(12), 3147-3157(2009). https://doi.org/10.1016/j.enconman.2009.08.014
  25. Canabarro, N., Soares, J. F., Anchieta, C. G., Kelling, C. S. and Mazutti, M. A., "Thermochemical Processes for Biofuels Production from Biomass," 1(1), 1-10(2013).
  26. Gautam, P., Upadhyay, S. N. and Dubey, S., "Bio-methanol as a Renewable Fuel from Waste Biomass: Current Trends and Future Perspective," 273, 117783(2020).
  27. Mohan, D., Pittman Jr, C. U. and Steele, P. H., "Pyrolysis of Wood/ biomass for Bio-oil: a Critical Review," 20(3), 848-889(2006).
  28. Yao, C., Tian, H., Hu, Z., Yin, Y., Chen, D. and Yan, X., "Characteristics and Kinetics Analyses of Different Genus Biomass Pyrolysis," Korean J. Chem. Eng., 35(2), 511-517(2018). https://doi.org/10.1007/s11814-017-0298-4
  29. Kaushal, P. and Abedi, J., "A Simplified Model for Biomass Pyrolysis in a Fluidized Bed Reactor," J. Ind. Eng. Chem., 16(5), 748-755(2010). https://doi.org/10.1016/j.jiec.2010.07.008
  30. Shun, D., Shin, J. S., Bae, D. H., Ryu, H. J. and Park, J., "A Comparison of Fluidized Bed Pyrolysis of Oil Sand from Utah, USA, and Alberta, Canada," Korean J. Chem. Eng., 34(12), 3125-3131(2017). https://doi.org/10.1007/s11814-017-0233-8
  31. Qureshi, K. M., Lup, A. N. K., Khan, S., Abnisa, F. and Daud, W. M. A. W., "Effect of Temperature and Feed Rate on Pyrolysis Oil Produced via Helical Screw Fluidized Bed Reactor," Korean J. Chem. Eng., 38(9), 1797-1809(2021). https://doi.org/10.1007/s11814-021-0842-0
  32. Lee, H. W., Jeong, H., Ju, Y. M. and Lee, S. M., "Upgrading of Bio-oil by Ex-situ Catalytic Pyrolysis and in-line Esterification in Fluidized Bed Reactor," Korean J. Chem. Eng., 37(7), 1174- 1180(2020). https://doi.org/10.1007/s11814-020-0527-0
  33. Kaminsky, W., "Chemical Recycling of Plastics by Fluidized Bed Pyrolysis," Fuel Commun., 8, 100023(2021).
  34. Suntivarakorn, R., Treedet, W., Singbua, P. and Teeramaetawat, N., "Fast Pyrolysis from Napier Grass for Pyrolysis Oil Production by Using Circulating Fluidized Bed Reactor: Improvement of Pyrolysis System and Production Cost," Energy Reports, 4, 565-575(2018). https://doi.org/10.1016/j.egyr.2018.08.004
  35. Park, J. Y., Kim, J. K., Oh, C. H., Park, J. W. and Kwon, E. E., "Production of Bio-oil from Fast Pyrolysis of Biomass Using a Pilot-scale Circulating Fluidized Bed Reactor and its Characterization," J. Environ. Manage., 234, 138-144(2019). https://doi.org/10.1016/j.jenvman.2018.12.104
  36. Makkawi, Y., El Sayed, Y., Salih, M., Nancarrow, P., Banks, S. and Bridgwater, T., "Fast Pyrolysis of Date Palm (Phoenix dactylifera) Waste in a Bubbling Fluidized Bed Reactor," Renew. Energy, 143, 719-730(2019). https://doi.org/10.1016/j.renene.2019.05.028
  37. Santamaria, L., Beirow, M., Mangold, F., Lopez, G., Olazar, M., Schmid, M., Li, Z. and Scheffknecht, G., "Influence of Temperature on Products from Fluidized Bed Pyrolysis of Wood and Solid Recovered Fuel," Fuel, 283, 118922(2021).
  38. Song, X., Wu, Y., He, X., Bagley, D. M., Adidharma, H., Wang, W. and Fan, M., "Performance and Characteristics of Continuous, Fluidized Bed Pyrolysis of Reed Black Liquor," Sep. Purif. Technol., 254, 117573(2021).
  39. Yogalakshmi, K., Sivashanmugam, P., Kavitha, S., Kannah, Y., Varjani, S., AdishKumar, S. and Kumar, G., "Lignocellulosic Biomass-based Pyrolysis: A Comprehensive Review," 286, 131824 (2022).
  40. Efika, C. E., Onwudili, J. A. and Williams, P. T., "Influence of Heating Rates on the Products of High-temperature Pyrolysis of Waste Wood Pellets and Biomass Model Compounds," 76, 497- 506(2018).
  41. Saraeian, A., Nolte, M. W. and Shanks, B. H., "Deoxygenation of Biomass Pyrolysis Vapors: Improving Clarity on the Fate of Carbon," 104, 262-280(2019).
  42. Sharifzadeh, M., Sadeqzadeh, M., Guo, M., Borhani, T. N., Konda, N. M., Garcia, M. C., Wang, L., Hallett, J. and Shah, N., "The Multi-scale Challenges of Biomass Fast Pyrolysis and Bio-oil Upgrading: Review of the State of Art and Future Research Directions," 71, 1-80(2019).
  43. Kucuk, M. and Demirbas, A., "Biomass Conversion Processes," 38(2), 151-165(1997). https://doi.org/10.1016/0196-8904(96)00031-3
  44. Zhang, Z. and Pang, S., "Experimental Investigation of Tar Formation and Producer Gas Composition in Biomass Steam Gasification in a 100 kW Dual Fluidised Bed Gasifier," Renew. Energy, 132, 416-424(2019). https://doi.org/10.1016/j.renene.2018.07.144
  45. Akay, G. and Jordan, C. A., "Gasification of Fuel Cane Bagasse in a Downdraft Gasifier: Influence of Lignocellulosic Composition and Fuel Particle Size on Syngas Composition and Yield," 25(5), 2274-2283(2011).
  46. Anukam, A., Mamphweli, S., Reddy, P., Meyer, E. and Okoh, O., "Pre-processing of Sugarcane Bagasse for Gasification in a Downdraft Biomass Gasifier System: A Comprehensive Review," Renewable Sustainable Energy Rev., 66, 775-801(2016). https://doi.org/10.1016/j.rser.2016.08.046
  47. Motta, I. L., Miranda, N. T., Maciel Filho, R. and Maciel, M. R. W., "Biomass Gasification in Fluidized Beds: A Review of Biomass Moisture Content and Operating Pressure Effects," Renew. Sustain. Energy Rev., 94, 998-1023(2018). https://doi.org/10.1016/j.rser.2018.06.042
  48. Pinto, F., Andre, R. N., Carolino, C. and Miranda, M., "Hot Treatment and Upgrading of Syngas Obtained by co-gasification of Coal and Wastes," Fuel Process. Technol., 126, 19-29(2014). https://doi.org/10.1016/j.fuproc.2014.04.016
  49. Heidenreich, S. and Foscolo, P. U., "New Concepts in Biomass Gasification," Prog. Energy Combust. Sci., 46, 72-95(2015). https://doi.org/10.1016/j.pecs.2014.06.002
  50. Molino, A., Chianese, S. and Musmarra, D., "Biomass Gasification Technology: The State of the Art Overview," J. Energy Chem., 25(1), 10-25(2016). https://doi.org/10.1016/j.jechem.2015.11.005
  51. Bae, K., Lim, J. H., Kim, J. H., Lee, D. H., Han, J. H., Park, S. H. and Lee, D. H., "Bubble Characteristics by Pressure Fluctuation Analysis in Gas-solid Bubbling Fluidized Beds with or Without Internal," Korean J. Chem. Eng., 34(2), 566-573(2017). https://doi.org/10.1007/s11814-016-0255-7
  52. Han, S. W., Seo, M. W., Park, S. J., Son, S. H., Yoon, S. J., Ra, H. W., Mun, T.-Y., Moon, J. H., Yoon, S. M. and Kim, J. H., "Air Gasification Characteristics of Unused Woody Biomass in a Lab-scale Bubbling Fluidized Bed Gasifier," Korean Chem. Eng. Res., 57(6), 874-882(2019).
  53. Hai, I. U., Sher, F., Yaqoob, A. and Liu, H., "Assessment of Biomass Energy Potential for SRC Willow Woodchips in a Pilot Scale Bubbling Fluidized Bed Gasifier," Fuel, 258, 116143(2019).
  54. Benedikt, F., Fuchs, J., Schmid, J. C., Muller, S. and Hofbauer, H., "Advanced Dual Fluidized Bed Steam Gasification of Wood and Lignite with Calcite as Bed Material," Korean J. Chem. Eng., 34(9), 2548-2558(2017). https://doi.org/10.1007/s11814-017-0141-y
  55. Karatas, H. and Akgun, F., "Experimental Results of Gasification of Walnut Shell and Pistachio Shell in a Bubbling Fluidized Bed Gasifier Under Air and Steam Atmospheres," Fuel, 214, 285- 292(2018). https://doi.org/10.1016/j.fuel.2017.10.061
  56. Stec, M., Czaplicki, A., Tomaszewicz, G. and Slowik, K., "Effect of CO2 Addition on Lignite Gasification in a CFB Reactor: A Pilot-scale Study," Korean J. Chem. Eng., 35(1), 129-136(2018). https://doi.org/10.1007/s11814-017-0275-y
  57. Makwana, J. P., Pandey, J. and Mishra, G., "Improving the Properties of Producer Gas Using High Temperature Gasification of Rice Husk in a Pilot Scale Fluidized Bed Gasifier (FBG)," Renewable Energy, 130, 943-951(2019). https://doi.org/10.1016/j.renene.2018.07.011
  58. Liu, L., Huang, Y., Cao, J., Liu, C., Dong, L., Xu, L. and Zha, J., "Experimental Study of Biomass Gasification with Oxygenenriched Air in Fluidized Bed Gasifier," Sci. Total Environ., 626, 423-433(2018). https://doi.org/10.1016/j.scitotenv.2018.01.016
  59. Ahmad, A. A., Zawawi, N. A., Kasim, F. H., Inayat, A. and Khasri, A., "Assessing the Gasification Performance of Biomass: A Review on Biomass Gasification Process Conditions, Optimization and Economic Evaluation," Renewable Sustainable Energy Rev., 53, 1333-1347(2016). https://doi.org/10.1016/j.rser.2015.09.030
  60. Samiran, N. A., Jaafar, M. N. M., Ng, J. H., Lam, S. S. and Chong, C. T., "Progress in Biomass Gasification Technique-with Focus on Malaysian Palm Biomass for Syngas Production," Renew. Sustain. Energy Rev., 62, 1047-1062(2016). https://doi.org/10.1016/j.rser.2016.04.049
  61. Puig Arnavat, M., Bruno, J. C. and Coronas, A., "Modified Thermodynamic Equilibrium Model for Biomass Gasification: a Study of the Influence of Operating Conditions," Energy Fuels, 26(2), 1385-1394(2012). https://doi.org/10.1021/ef2019462
  62. Atimtay, A. T., Kayahan, U., Unlu, A., Engin, B., Varol, M., Olgun, H. and Atakul, H., "Co-firing of Pine Chips with Turkish Lignites in 750 kWth Circulating Fluidized Bed Combustion System," 224, 601-610(2017).
  63. Goransson, K., Soderlind, U., He, J. and Zhang, W., "Review of Syngas Production via Biomass DFBGs," Renew. Sustain. Energy Rev., 15(1), 482-492(2011). https://doi.org/10.1016/j.rser.2010.09.032
  64. Park, S. S., Chae, H. J., Kim, T. W., Jeong, K. E., Kim, C. U., Jeong, S. Y., Lim, J. H., Park, Y. K. and Lee, D. H., "Prediction of Axial Solid Holdups in a CFB Riser," Korean Chem. Eng. Res., 56(6), 878-883(2018).
  65. Lian, Z., Wang, Y., Zhang, X., Yusuf, A., Famiyeh, L., Murindababisha, D., Jin, H., Liu, Y., He, J. and Wang, Y., "Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach," J., 4(3), 266-287(2021).
  66. Soanuch, C., Korkerd, K., Phupanit, J., Piemjaiswang, R., Piumsomboon, P. and Chalermsinsuwan, B., "Computational Fluid Dynamics Simulation of Methanol to Olefins in Stage Circulating Fluidized Bed Riser: Effect of Reactor Stage Parameters on Product Yields," Korean J. Chem. Eng., 38(3), 540-551(2021). https://doi.org/10.1007/s11814-020-0713-0
  67. Park, H. s., Baek, I. H., Hyun, J. S., Sim, J. M., Jo, Y. H., Yu, J. H., Choi, H. G., Kim, S. D., Lim, J. H., Yeo, J. G., Nam, S. C., Park, S. R., Choi, S. H., Whang, Y. T., Han, G. H., Lee, H. G., Choi, W. G., Lee, J. S., Jeon, J. D. and Jo, J. P., "Development of Clean Power Plant Core Component Technology," Korea Institute of Energy Research, (TRKO201900001982), 2018.
  68. Moon, J. H., Jo, S. H., Mun, T. Y., Park, S. J., Kim, J. Y., Nguyen, H. K. and Lee, J. G., "Oxy Combustion Characteristics of Anthracite in a 100 kW th Circulating Fluidized Bed System," Korean Chem. Eng. Res., 57(3), 400-407(2019).
  69. Gwak, Y. R., Kim, Y. B., Keel, S. I., Yun, J. H. and Lee, S. H., "Analysis of Oxygen Combustion Characteristics of a Low Grade Coal Using IEA-CFBC Model," Korean Chem. Eng. Res., 56(5), 631-640(2018).
  70. Gwak, Y. R., Yun, J. H., Keel, S. I. and Lee, S. H., "Numerical Study of Oxy-fuel Combustion Behaviors in a 2 MWe CFB Boiler," Korean J. Chem. Eng., 37(11), 1878-1887(2020). https://doi.org/10.1007/s11814-020-0611-5
  71. Jang, H. N., Sung, J. H., Choi, H. S. and Seo, Y. C., "Combustion Characteristics of Waste Sewage Sludge Using Oxy-fuel Circulating Fluidized Bed," Korean Chem. Eng. Res., 55(6), 846-853 (2017).
  72. Cammarota, A., Cammarota, F., Chirone, R., Ruoppolo, G., Solimene, R. and Urciuolo, M., "Fluidized Bed Combustion of Pelletized Sewage Sludge in a Pilot Scale Reactor," Sci. Technol., 2019.
  73. Nguyen, H. K., Moon, J. H., Jo, S. H., Park, S. J., Seo, M. W., Ra, H. W., Yoon, S. J., Yoon, S. M., Song, B. H. and Lee, U., "Oxycombustion Characteristics as a Function of Oxygen Concentration and Biomass co-firing Ratio in a 0.1 MWth Circulating Fluidized Bed Combustion Test-rig," Energy & fuels, 196, 117020(2020).
  74. Sher, F., Pans, M. A., Sun, C., Snape, C. and Liu, H., "Oxy-fuel Combustion Study of Biomass Fuels in a 20 kWth Fluidized Bed Combustor," Fuel 215, 778-786(2018). https://doi.org/10.1016/j.fuel.2017.11.039
  75. Wang, X., Ren, Q., Li, W., Li, H., Li, S. and Lu, Q., "Nitrogenous Gas Emissions from Coal/biomass co-combustion Under a High Oxygen Concentration in a Circulating Fluidized Bed," Energy Fuels, 31(3), 3234-3242(2017). https://doi.org/10.1021/acs.energyfuels.6b03141
  76. Chi, H., Pans, M. A., Sun, C. and Liu, H., "An Investigation of Lime Addition to Fuel as a Countermeasure to Bed Agglomeration for the Combustion of Non-woody Biomass Fuels in a 20 kWth Bubbling Fluidised Bed Combustor," Fuel, 240, 349-361(2019). https://doi.org/10.1016/j.fuel.2018.11.122
  77. Go, E. S., Kook, J. W., Seo, K. W., Seo, S. B., Kim, H. W., Kang, S. Y. and Lee, S. H., "Anthracite Oxygen Combustion Simulation in 0.1 MW th Circulating Fluidized Bed," Korean Chem. Eng. Res., 59(3), 417-428(2021).
  78. Yoon, S. H., Beak, G. U., Moon, J. H., Jo, S. H., Park, S. J., Kim, J. Y., Seo, M. W., Yoon, S. J., Yoon, S. M. and Lee, J. G., "Airstaging Effect for NO x Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass," Korean Chem. Eng. Res., 59(1), 127-137(2021).
  79. Luis, F., de las Obras Loscertales, M., Garcia Labiano, F., Rufas, A., Abad, A., Gayan, P. and Adanez, J., "Characterization of a Limestone in a Batch Fluidized Bed Reactor for Sulfur Retention Under Oxy-fuel Operating Conditions," Int. J. Greenhouse Gas Control., 5(5), 1190-1198(2011). https://doi.org/10.1016/j.ijggc.2011.05.032
  80. Kang, S., Go, E., Seo, S., Kim, H., Keel, S. and Lee, S., "A Comparative Evaluation of Recarbonated CaCO3 Derived from Limestone Under Oxy-fuel Circulating Fluidized Bed Conditions," Sci. Total Environ., 758, 143704(2021).
  81. Kim, Y. B., Gwak, Y. R., Keel, S. I., Yun, J. H. and Lee, S. H., "Direct Desulfurization of Limestones Under Oxy-circulating Fluidized Bed Combustion Conditions," Chem. Eng. J., 377, 119650 (2019).
  82. Kang, S. Y., Seo, S. B., Go, E. S., Kim, H. W., Keel, S. I., Park, Y.-K. and Lee, S. H., "Effect of Particle Size on in-situ Desulfurization for Oxy-fuel CFBC," Fuel, 291, 120270(2021).
  83. Kim, Y. B., Gwak, Y. R., Keel, S. I., Yun, J. H. and Lee, S. H., "Re-carbonation of Calcined Limestone Under Oxy-circulating Fluidized Bed Combustion Conditions," Korean Chem. Eng. Res., 56(6), 856-863(2018).
  84. Kim, Y. B., Kang, S. Y., Seo, S. B., Keel, S. I., Yun, J. H. and Lee, S. H., "The Attrition and Calcination Characteristics of Domestic Limestones for in-situ Desulfurization in Circulating Fluidized Bed Boilers," Korean Chem. Eng. Res., 57(5), 687-694(2019). https://doi.org/10.9713/kcer.2019.57.5.687
  85. Li, B., Li, Y., Zhang, W., Qian, Y. and Wang, Z., "Simultaneous NO/SO2 Removal by Coconut Shell Char/CaO from Calcium Looping in a Fluidized Bed Reactor," Korean J. Chem. Eng., 37(4), 688-697(2020). https://doi.org/10.1007/s11814-020-0483-8
  86. Park, J. H., Lee, D. H., Bae, D. H., Choi, Y. J., Ryu, H. W., Kim, J. B., Han, K. H. and Shun, D., "The Effect of Borax Solution on the Reduction of Fine Particles in Flue Gas at a Commercial Circulating Fluidized-bed Boiler Firing Bituminous Coal," Korean Chem. Eng. Res., 57(4), 492-500(2019).
  87. Nam, H., Wang, S., Sanjeev, K., Seo, M. W., Adhikari, S., Shakya, R., Lee, D. and Shanmugam, S. R., "Enriched Hydrogen Production over Air and Air-steam Fluidized Bed Gasification in a Bubbling Fluidized Bed Reactor with CaO: Effects of Biomass and Bed Material Catalyst," 225, 113408(2020).
  88. Kim, H. W., Lee, D., Nam, H., Hong, Y. W., Seo, S. B., Go, E. S., Kang, S. Y. and Lee, S. H., "Attrition and Heat Transfer Characteristics of Fluidized Bed Materials for a Solar Hybrid Process," Clean Technol., 26(1), 65-71(2020).