References
- Lee, R., Gwak, Y. R., Sohn, J. M. and Lee, S. H., "The Prediction of CO2 Emissions in Domestic Power Generation Sector Between 2020 and 2030 for Korea," 32(5), 855-873(2021).
- Seo, M. W., Lee, S. H., Nam, H., Lee, D., Tokmurzin, D., Wang, S. and Park, Y.-K., "Recent Advances of Thermochemical Conversion Processes for Biorefinery," Bioresour. Technol., 343, 126109 (2022).
- Tumsa, T. Z., Lee, S. H., Normann, F., Andersson, K., Ajdari, S. and Yang, W., "Concomitant Removal of NOx and SOx from a Pressurized Oxy-fuel Combustion Process Using a Direct Contact Column," Chem. Eng. Res. Des., 131, 626-634(2018). https://doi.org/10.1016/j.cherd.2017.11.035
- Lee, S. H., Kim, D. W., Lee, J. M. and Bae, Y. C., "Evaluation of Limestone for in-situ Desulfurization in CFB Boilers," Korean Chem. Eng. Res., 57(6), 853-860(2019).
- Kim, Y. B., Kang, S. Y., Seo, S. B., Keel, S. I., Yun, J. H. and Lee, S. H., "The Attrition and Calcination Characteristics of Domestic Limestones for in-situ Desulfurization in Circulating Fluidized Bed Boilers," 57(5), 687-694(2019).
- Fuchs, J., Schmid, J. C., Muller, S. and Hofbauer, H., "Dual Fluidized Bed Gasification of Biomass with Selective Carbon Dioxide Removal and Limestone as Bed Material: A Review," Renew. Sustain. Energy Rev., 107, 212-231(2019). https://doi.org/10.1016/j.rser.2019.03.013
- Gholizadeh, M., Hu, X. and Liu, Q., "A Mini Review of the Specialties of the Bio-oils Produced from Pyrolysis of 20 Different Biomasses," Renew. Sustain. Energy Rev., 114, 109313(2019).
- Seo, S. B., Go, E. S., Ling, J. L. J. and Lee, S. H., "Techno-economic Assessment of a Solar-assisted Biomass Gasification Process," Renew. Energy, 193, 23-31(2022). https://doi.org/10.1016/j.renene.2022.05.033
- Seo, S. B., Ahn, H., Go, E. S., Ling, L. J. J., Siambun, N. J., Park, Y.-K. and Lee, S. H., "Evaluation of the Solar Thermal Storage of Fluidized Bed Materials for Hybrid Solar Thermo-chemical Processes," Biomass Convers. Biorefin., 1-10(2022).
- Ling, J., Kim, H., Go, E., Oh, S., Park, H., Jeong, C. and Lee, S., "Analysis of Operational Characteristics of Biomass Oxygen Fuel Circulating Fluidized Bed Combustor with Indirect Supercritical Carbon Dioxide Cycle," Energy Convers. Manag., 259, 115569(2022).
- Kim, H. W., Seo, S. B., Kang, S. Y., Go, E. S., Oh, S. S., Lee, Y., Yang, W. and Lee, S. H., "Effect of Flue Gas Recirculation on Efficiency of an Indirect Supercritical CO2 Oxy-fuel Circulating Fluidized Bed Power Plant," Energy & fuels, 227, 120487(2021).
- Mallick, D., Mahanta, P. and Moholkar, V. S., "Co-gasification of Biomass Blends: Performance Evaluation in Circulating Fluidized Bed Gasifier," Energy Fuels, 192, 116682(2020).
- Lee, S. H., Lee, T. H., Jeong, S. M. and Lee, J. M., "Economic Analysis of a 600 mwe Ultra Supercritical Circulating Fluidized Bed Power Plant Based on Coal Tax and Biomass co-combustion Plans," Renew. Energy, 138, 121-127(2019). https://doi.org/10.1016/j.renene.2019.01.074
- Lee, J.-M., Kim, D.-W., Kim, J.-S., Na, J.-G. and Lee, S.-H., "Co-Combustion of Refuse Derived Fuel with Korean Anthracite in a Commercial Circulating Fluidized Bed Boiler," Energy & fuels, 35(7), 2814-2818(2010). https://doi.org/10.1016/j.energy.2010.03.008
- Gomez Barea, A. and Leckner, B., "Modeling of Biomass Gasification in Fluidized Bed," Prog. Energy Combust. Sci., 36(4), 444-509(2010). https://doi.org/10.1016/j.pecs.2009.12.002
- Seo, M. W., Kim, S. D., Na, J. G. and Lee, S. H., "Pyrolysis, Partial Oxidation, and Combustion Characteristics of Micro Algae," Korean Chem. Eng. Res., 47(6), 734-739(2009).
- Demirbas, A., "Combustion Characteristics of Different Biomass Fuels," Prog. Energy Combust. Sci., 30(2), 219-230(2004). https://doi.org/10.1016/j.pecs.2003.10.004
- Lee, S. H., Kim, J.-M., Kim, J.-S., Choe, J.-H. and Kim, S.-D., "Combustion Characteristics of Anthracite Coal in the D CFB boiler," Korean Chem. Eng. Res., 38(4), 516-516(2000).
- Lee, J. R., Kim, Y. H. and Won, Y. S., "Solid-state Reaction Between MoS2 and MoO3 in a Fluidized Bed Reactor," Korean J. Chem. Eng., 38(9), 1791-1796(2021). https://doi.org/10.1007/s11814-021-0797-1
- Salehi Asl, M., Azhgan, S. and Movahedirad, S., "Some General Aspects of a Gas-solid Fluidized Bed Using Digital Image Analysis," Korean J. Chem. Eng., 35(2), 613-620(2018). https://doi.org/10.1007/s11814-017-0291-y
- Usmani, Z., Sharma, M., Awasthi, A. K., Sivakumar, N., Lukk, T., Pecoraro, L., Thakur, V. K., Roberts, D., Newbold, J. and Gupta, V. K., "Bioprocessing of Waste Biomass for Sustainable Product Development and Minimizing Environmental Impact," Bioresour. Technol., 322, 124548(2021).
- Collard, F. X. and Blin, J., "A Review on Pyrolysis of Biomass Constituents: Mechanisms and Composition of the Products Obtained from the Conversion of Cellulose, Hemicelluloses and Lignin," Renew. Sustain. Energy Rev., 38, 594-608(2014). https://doi.org/10.1016/j.rser.2014.06.013
- Kan, T., Strezov, V. and Evans, T. J., "Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters," 57, 1126-1140(2016).
- Balat, M., Balat, M., Kirtay, E. and Balat, H., "Main Routes for the Thermo-conversion of Biomass Into Fuels and Chemicals. Part 1: Pyrolysis Systems," Energy Convers. Manage., 50(12), 3147-3157(2009). https://doi.org/10.1016/j.enconman.2009.08.014
- Canabarro, N., Soares, J. F., Anchieta, C. G., Kelling, C. S. and Mazutti, M. A., "Thermochemical Processes for Biofuels Production from Biomass," 1(1), 1-10(2013).
- Gautam, P., Upadhyay, S. N. and Dubey, S., "Bio-methanol as a Renewable Fuel from Waste Biomass: Current Trends and Future Perspective," 273, 117783(2020).
- Mohan, D., Pittman Jr, C. U. and Steele, P. H., "Pyrolysis of Wood/ biomass for Bio-oil: a Critical Review," 20(3), 848-889(2006).
- Yao, C., Tian, H., Hu, Z., Yin, Y., Chen, D. and Yan, X., "Characteristics and Kinetics Analyses of Different Genus Biomass Pyrolysis," Korean J. Chem. Eng., 35(2), 511-517(2018). https://doi.org/10.1007/s11814-017-0298-4
- Kaushal, P. and Abedi, J., "A Simplified Model for Biomass Pyrolysis in a Fluidized Bed Reactor," J. Ind. Eng. Chem., 16(5), 748-755(2010). https://doi.org/10.1016/j.jiec.2010.07.008
- Shun, D., Shin, J. S., Bae, D. H., Ryu, H. J. and Park, J., "A Comparison of Fluidized Bed Pyrolysis of Oil Sand from Utah, USA, and Alberta, Canada," Korean J. Chem. Eng., 34(12), 3125-3131(2017). https://doi.org/10.1007/s11814-017-0233-8
- Qureshi, K. M., Lup, A. N. K., Khan, S., Abnisa, F. and Daud, W. M. A. W., "Effect of Temperature and Feed Rate on Pyrolysis Oil Produced via Helical Screw Fluidized Bed Reactor," Korean J. Chem. Eng., 38(9), 1797-1809(2021). https://doi.org/10.1007/s11814-021-0842-0
- Lee, H. W., Jeong, H., Ju, Y. M. and Lee, S. M., "Upgrading of Bio-oil by Ex-situ Catalytic Pyrolysis and in-line Esterification in Fluidized Bed Reactor," Korean J. Chem. Eng., 37(7), 1174- 1180(2020). https://doi.org/10.1007/s11814-020-0527-0
- Kaminsky, W., "Chemical Recycling of Plastics by Fluidized Bed Pyrolysis," Fuel Commun., 8, 100023(2021).
- Suntivarakorn, R., Treedet, W., Singbua, P. and Teeramaetawat, N., "Fast Pyrolysis from Napier Grass for Pyrolysis Oil Production by Using Circulating Fluidized Bed Reactor: Improvement of Pyrolysis System and Production Cost," Energy Reports, 4, 565-575(2018). https://doi.org/10.1016/j.egyr.2018.08.004
- Park, J. Y., Kim, J. K., Oh, C. H., Park, J. W. and Kwon, E. E., "Production of Bio-oil from Fast Pyrolysis of Biomass Using a Pilot-scale Circulating Fluidized Bed Reactor and its Characterization," J. Environ. Manage., 234, 138-144(2019). https://doi.org/10.1016/j.jenvman.2018.12.104
- Makkawi, Y., El Sayed, Y., Salih, M., Nancarrow, P., Banks, S. and Bridgwater, T., "Fast Pyrolysis of Date Palm (Phoenix dactylifera) Waste in a Bubbling Fluidized Bed Reactor," Renew. Energy, 143, 719-730(2019). https://doi.org/10.1016/j.renene.2019.05.028
- Santamaria, L., Beirow, M., Mangold, F., Lopez, G., Olazar, M., Schmid, M., Li, Z. and Scheffknecht, G., "Influence of Temperature on Products from Fluidized Bed Pyrolysis of Wood and Solid Recovered Fuel," Fuel, 283, 118922(2021).
- Song, X., Wu, Y., He, X., Bagley, D. M., Adidharma, H., Wang, W. and Fan, M., "Performance and Characteristics of Continuous, Fluidized Bed Pyrolysis of Reed Black Liquor," Sep. Purif. Technol., 254, 117573(2021).
- Yogalakshmi, K., Sivashanmugam, P., Kavitha, S., Kannah, Y., Varjani, S., AdishKumar, S. and Kumar, G., "Lignocellulosic Biomass-based Pyrolysis: A Comprehensive Review," 286, 131824 (2022).
- Efika, C. E., Onwudili, J. A. and Williams, P. T., "Influence of Heating Rates on the Products of High-temperature Pyrolysis of Waste Wood Pellets and Biomass Model Compounds," 76, 497- 506(2018).
- Saraeian, A., Nolte, M. W. and Shanks, B. H., "Deoxygenation of Biomass Pyrolysis Vapors: Improving Clarity on the Fate of Carbon," 104, 262-280(2019).
- Sharifzadeh, M., Sadeqzadeh, M., Guo, M., Borhani, T. N., Konda, N. M., Garcia, M. C., Wang, L., Hallett, J. and Shah, N., "The Multi-scale Challenges of Biomass Fast Pyrolysis and Bio-oil Upgrading: Review of the State of Art and Future Research Directions," 71, 1-80(2019).
- Kucuk, M. and Demirbas, A., "Biomass Conversion Processes," 38(2), 151-165(1997). https://doi.org/10.1016/0196-8904(96)00031-3
- Zhang, Z. and Pang, S., "Experimental Investigation of Tar Formation and Producer Gas Composition in Biomass Steam Gasification in a 100 kW Dual Fluidised Bed Gasifier," Renew. Energy, 132, 416-424(2019). https://doi.org/10.1016/j.renene.2018.07.144
- Akay, G. and Jordan, C. A., "Gasification of Fuel Cane Bagasse in a Downdraft Gasifier: Influence of Lignocellulosic Composition and Fuel Particle Size on Syngas Composition and Yield," 25(5), 2274-2283(2011).
- Anukam, A., Mamphweli, S., Reddy, P., Meyer, E. and Okoh, O., "Pre-processing of Sugarcane Bagasse for Gasification in a Downdraft Biomass Gasifier System: A Comprehensive Review," Renewable Sustainable Energy Rev., 66, 775-801(2016). https://doi.org/10.1016/j.rser.2016.08.046
- Motta, I. L., Miranda, N. T., Maciel Filho, R. and Maciel, M. R. W., "Biomass Gasification in Fluidized Beds: A Review of Biomass Moisture Content and Operating Pressure Effects," Renew. Sustain. Energy Rev., 94, 998-1023(2018). https://doi.org/10.1016/j.rser.2018.06.042
- Pinto, F., Andre, R. N., Carolino, C. and Miranda, M., "Hot Treatment and Upgrading of Syngas Obtained by co-gasification of Coal and Wastes," Fuel Process. Technol., 126, 19-29(2014). https://doi.org/10.1016/j.fuproc.2014.04.016
- Heidenreich, S. and Foscolo, P. U., "New Concepts in Biomass Gasification," Prog. Energy Combust. Sci., 46, 72-95(2015). https://doi.org/10.1016/j.pecs.2014.06.002
- Molino, A., Chianese, S. and Musmarra, D., "Biomass Gasification Technology: The State of the Art Overview," J. Energy Chem., 25(1), 10-25(2016). https://doi.org/10.1016/j.jechem.2015.11.005
- Bae, K., Lim, J. H., Kim, J. H., Lee, D. H., Han, J. H., Park, S. H. and Lee, D. H., "Bubble Characteristics by Pressure Fluctuation Analysis in Gas-solid Bubbling Fluidized Beds with or Without Internal," Korean J. Chem. Eng., 34(2), 566-573(2017). https://doi.org/10.1007/s11814-016-0255-7
- Han, S. W., Seo, M. W., Park, S. J., Son, S. H., Yoon, S. J., Ra, H. W., Mun, T.-Y., Moon, J. H., Yoon, S. M. and Kim, J. H., "Air Gasification Characteristics of Unused Woody Biomass in a Lab-scale Bubbling Fluidized Bed Gasifier," Korean Chem. Eng. Res., 57(6), 874-882(2019).
- Hai, I. U., Sher, F., Yaqoob, A. and Liu, H., "Assessment of Biomass Energy Potential for SRC Willow Woodchips in a Pilot Scale Bubbling Fluidized Bed Gasifier," Fuel, 258, 116143(2019).
- Benedikt, F., Fuchs, J., Schmid, J. C., Muller, S. and Hofbauer, H., "Advanced Dual Fluidized Bed Steam Gasification of Wood and Lignite with Calcite as Bed Material," Korean J. Chem. Eng., 34(9), 2548-2558(2017). https://doi.org/10.1007/s11814-017-0141-y
- Karatas, H. and Akgun, F., "Experimental Results of Gasification of Walnut Shell and Pistachio Shell in a Bubbling Fluidized Bed Gasifier Under Air and Steam Atmospheres," Fuel, 214, 285- 292(2018). https://doi.org/10.1016/j.fuel.2017.10.061
- Stec, M., Czaplicki, A., Tomaszewicz, G. and Slowik, K., "Effect of CO2 Addition on Lignite Gasification in a CFB Reactor: A Pilot-scale Study," Korean J. Chem. Eng., 35(1), 129-136(2018). https://doi.org/10.1007/s11814-017-0275-y
- Makwana, J. P., Pandey, J. and Mishra, G., "Improving the Properties of Producer Gas Using High Temperature Gasification of Rice Husk in a Pilot Scale Fluidized Bed Gasifier (FBG)," Renewable Energy, 130, 943-951(2019). https://doi.org/10.1016/j.renene.2018.07.011
- Liu, L., Huang, Y., Cao, J., Liu, C., Dong, L., Xu, L. and Zha, J., "Experimental Study of Biomass Gasification with Oxygenenriched Air in Fluidized Bed Gasifier," Sci. Total Environ., 626, 423-433(2018). https://doi.org/10.1016/j.scitotenv.2018.01.016
- Ahmad, A. A., Zawawi, N. A., Kasim, F. H., Inayat, A. and Khasri, A., "Assessing the Gasification Performance of Biomass: A Review on Biomass Gasification Process Conditions, Optimization and Economic Evaluation," Renewable Sustainable Energy Rev., 53, 1333-1347(2016). https://doi.org/10.1016/j.rser.2015.09.030
- Samiran, N. A., Jaafar, M. N. M., Ng, J. H., Lam, S. S. and Chong, C. T., "Progress in Biomass Gasification Technique-with Focus on Malaysian Palm Biomass for Syngas Production," Renew. Sustain. Energy Rev., 62, 1047-1062(2016). https://doi.org/10.1016/j.rser.2016.04.049
- Puig Arnavat, M., Bruno, J. C. and Coronas, A., "Modified Thermodynamic Equilibrium Model for Biomass Gasification: a Study of the Influence of Operating Conditions," Energy Fuels, 26(2), 1385-1394(2012). https://doi.org/10.1021/ef2019462
- Atimtay, A. T., Kayahan, U., Unlu, A., Engin, B., Varol, M., Olgun, H. and Atakul, H., "Co-firing of Pine Chips with Turkish Lignites in 750 kWth Circulating Fluidized Bed Combustion System," 224, 601-610(2017).
- Goransson, K., Soderlind, U., He, J. and Zhang, W., "Review of Syngas Production via Biomass DFBGs," Renew. Sustain. Energy Rev., 15(1), 482-492(2011). https://doi.org/10.1016/j.rser.2010.09.032
- Park, S. S., Chae, H. J., Kim, T. W., Jeong, K. E., Kim, C. U., Jeong, S. Y., Lim, J. H., Park, Y. K. and Lee, D. H., "Prediction of Axial Solid Holdups in a CFB Riser," Korean Chem. Eng. Res., 56(6), 878-883(2018).
- Lian, Z., Wang, Y., Zhang, X., Yusuf, A., Famiyeh, L., Murindababisha, D., Jin, H., Liu, Y., He, J. and Wang, Y., "Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach," J., 4(3), 266-287(2021).
- Soanuch, C., Korkerd, K., Phupanit, J., Piemjaiswang, R., Piumsomboon, P. and Chalermsinsuwan, B., "Computational Fluid Dynamics Simulation of Methanol to Olefins in Stage Circulating Fluidized Bed Riser: Effect of Reactor Stage Parameters on Product Yields," Korean J. Chem. Eng., 38(3), 540-551(2021). https://doi.org/10.1007/s11814-020-0713-0
- Park, H. s., Baek, I. H., Hyun, J. S., Sim, J. M., Jo, Y. H., Yu, J. H., Choi, H. G., Kim, S. D., Lim, J. H., Yeo, J. G., Nam, S. C., Park, S. R., Choi, S. H., Whang, Y. T., Han, G. H., Lee, H. G., Choi, W. G., Lee, J. S., Jeon, J. D. and Jo, J. P., "Development of Clean Power Plant Core Component Technology," Korea Institute of Energy Research, (TRKO201900001982), 2018.
- Moon, J. H., Jo, S. H., Mun, T. Y., Park, S. J., Kim, J. Y., Nguyen, H. K. and Lee, J. G., "Oxy Combustion Characteristics of Anthracite in a 100 kW th Circulating Fluidized Bed System," Korean Chem. Eng. Res., 57(3), 400-407(2019).
- Gwak, Y. R., Kim, Y. B., Keel, S. I., Yun, J. H. and Lee, S. H., "Analysis of Oxygen Combustion Characteristics of a Low Grade Coal Using IEA-CFBC Model," Korean Chem. Eng. Res., 56(5), 631-640(2018).
- Gwak, Y. R., Yun, J. H., Keel, S. I. and Lee, S. H., "Numerical Study of Oxy-fuel Combustion Behaviors in a 2 MWe CFB Boiler," Korean J. Chem. Eng., 37(11), 1878-1887(2020). https://doi.org/10.1007/s11814-020-0611-5
- Jang, H. N., Sung, J. H., Choi, H. S. and Seo, Y. C., "Combustion Characteristics of Waste Sewage Sludge Using Oxy-fuel Circulating Fluidized Bed," Korean Chem. Eng. Res., 55(6), 846-853 (2017).
- Cammarota, A., Cammarota, F., Chirone, R., Ruoppolo, G., Solimene, R. and Urciuolo, M., "Fluidized Bed Combustion of Pelletized Sewage Sludge in a Pilot Scale Reactor," Sci. Technol., 2019.
- Nguyen, H. K., Moon, J. H., Jo, S. H., Park, S. J., Seo, M. W., Ra, H. W., Yoon, S. J., Yoon, S. M., Song, B. H. and Lee, U., "Oxycombustion Characteristics as a Function of Oxygen Concentration and Biomass co-firing Ratio in a 0.1 MWth Circulating Fluidized Bed Combustion Test-rig," Energy & fuels, 196, 117020(2020).
- Sher, F., Pans, M. A., Sun, C., Snape, C. and Liu, H., "Oxy-fuel Combustion Study of Biomass Fuels in a 20 kWth Fluidized Bed Combustor," Fuel 215, 778-786(2018). https://doi.org/10.1016/j.fuel.2017.11.039
- Wang, X., Ren, Q., Li, W., Li, H., Li, S. and Lu, Q., "Nitrogenous Gas Emissions from Coal/biomass co-combustion Under a High Oxygen Concentration in a Circulating Fluidized Bed," Energy Fuels, 31(3), 3234-3242(2017). https://doi.org/10.1021/acs.energyfuels.6b03141
- Chi, H., Pans, M. A., Sun, C. and Liu, H., "An Investigation of Lime Addition to Fuel as a Countermeasure to Bed Agglomeration for the Combustion of Non-woody Biomass Fuels in a 20 kWth Bubbling Fluidised Bed Combustor," Fuel, 240, 349-361(2019). https://doi.org/10.1016/j.fuel.2018.11.122
- Go, E. S., Kook, J. W., Seo, K. W., Seo, S. B., Kim, H. W., Kang, S. Y. and Lee, S. H., "Anthracite Oxygen Combustion Simulation in 0.1 MW th Circulating Fluidized Bed," Korean Chem. Eng. Res., 59(3), 417-428(2021).
- Yoon, S. H., Beak, G. U., Moon, J. H., Jo, S. H., Park, S. J., Kim, J. Y., Seo, M. W., Yoon, S. J., Yoon, S. M. and Lee, J. G., "Airstaging Effect for NO x Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass," Korean Chem. Eng. Res., 59(1), 127-137(2021).
- Luis, F., de las Obras Loscertales, M., Garcia Labiano, F., Rufas, A., Abad, A., Gayan, P. and Adanez, J., "Characterization of a Limestone in a Batch Fluidized Bed Reactor for Sulfur Retention Under Oxy-fuel Operating Conditions," Int. J. Greenhouse Gas Control., 5(5), 1190-1198(2011). https://doi.org/10.1016/j.ijggc.2011.05.032
- Kang, S., Go, E., Seo, S., Kim, H., Keel, S. and Lee, S., "A Comparative Evaluation of Recarbonated CaCO3 Derived from Limestone Under Oxy-fuel Circulating Fluidized Bed Conditions," Sci. Total Environ., 758, 143704(2021).
- Kim, Y. B., Gwak, Y. R., Keel, S. I., Yun, J. H. and Lee, S. H., "Direct Desulfurization of Limestones Under Oxy-circulating Fluidized Bed Combustion Conditions," Chem. Eng. J., 377, 119650 (2019).
- Kang, S. Y., Seo, S. B., Go, E. S., Kim, H. W., Keel, S. I., Park, Y.-K. and Lee, S. H., "Effect of Particle Size on in-situ Desulfurization for Oxy-fuel CFBC," Fuel, 291, 120270(2021).
- Kim, Y. B., Gwak, Y. R., Keel, S. I., Yun, J. H. and Lee, S. H., "Re-carbonation of Calcined Limestone Under Oxy-circulating Fluidized Bed Combustion Conditions," Korean Chem. Eng. Res., 56(6), 856-863(2018).
- Kim, Y. B., Kang, S. Y., Seo, S. B., Keel, S. I., Yun, J. H. and Lee, S. H., "The Attrition and Calcination Characteristics of Domestic Limestones for in-situ Desulfurization in Circulating Fluidized Bed Boilers," Korean Chem. Eng. Res., 57(5), 687-694(2019). https://doi.org/10.9713/kcer.2019.57.5.687
- Li, B., Li, Y., Zhang, W., Qian, Y. and Wang, Z., "Simultaneous NO/SO2 Removal by Coconut Shell Char/CaO from Calcium Looping in a Fluidized Bed Reactor," Korean J. Chem. Eng., 37(4), 688-697(2020). https://doi.org/10.1007/s11814-020-0483-8
- Park, J. H., Lee, D. H., Bae, D. H., Choi, Y. J., Ryu, H. W., Kim, J. B., Han, K. H. and Shun, D., "The Effect of Borax Solution on the Reduction of Fine Particles in Flue Gas at a Commercial Circulating Fluidized-bed Boiler Firing Bituminous Coal," Korean Chem. Eng. Res., 57(4), 492-500(2019).
- Nam, H., Wang, S., Sanjeev, K., Seo, M. W., Adhikari, S., Shakya, R., Lee, D. and Shanmugam, S. R., "Enriched Hydrogen Production over Air and Air-steam Fluidized Bed Gasification in a Bubbling Fluidized Bed Reactor with CaO: Effects of Biomass and Bed Material Catalyst," 225, 113408(2020).
- Kim, H. W., Lee, D., Nam, H., Hong, Y. W., Seo, S. B., Go, E. S., Kang, S. Y. and Lee, S. H., "Attrition and Heat Transfer Characteristics of Fluidized Bed Materials for a Solar Hybrid Process," Clean Technol., 26(1), 65-71(2020).