Abstract
This study is a performance evaluation of a blood sugar monitoring system that combines a PPG sensor, which is an evaluation device for blood glucose monitoring, and a DNN algorithm when monitoring capillary blood glucose. The study is a researcher-led clinical trial conducted on participants from September 2023 to November 2023. PPG-BGMS compared predicted blood sugar levels for evaluation using 1-minute heart rate and heart rate variability information and the DNN prediction algorithm with capillary blood glucose levels measured with a blood glucose meter of the standard personal blood sugar management system. Of the 100 participants, 50 had type 2 diabetes (T2DM), and the average age was 67 years (range, 28 to 89 years). It was found that 100% of the predicted blood sugar level of PPG-BGMS was distributed in the A+B area of the Clarke error grid and Parker(Consensus) error grid. The MARD value of PPG-BGMS predicted blood glucose is 5.3 ± 4.0%. Consequentially, the non-blood-based PPG-BGMS was found to be non-inferior to the instantaneous blood sugar level of the clinical standard blood-based personal blood glucose measurement system.
본 연구는 모세관 혈당의 혈당값을 대조군으로 연구 참가자의 혈액 포도당을 모니티링할 때 PPG 센서와 DNN 예측알고리즘이 융합된 혈당모니터링 시스템(PPG-BGMS)의 성능을 평가하는 것이다. 연구는 2023년 9월부터 2023년 11월까지 참가자를 대상으로 실시된 연구자 임상시험이다. PPG-BGMS는 1분간의 심박수, 심박변이도 정보와 DNN 예측알고리즘을 활용한 예측된 혈당수치와 개인용혈당관리시스템의 혈당측정기로 측정한 모세관혈당 수치와 비교했다. 총 100명의 참가자 중 제2형 당뇨(T2DM) 유병인은 50명이며, 평균연령은 67세(28세~89세)이다. PPG-BGMS의 예측혈당의 100%가 Clarke 오류그리드 및 Parker(Consensus) 오류그리드의 A+B 영역에 분포하는 것으로 나타났다. PPG-BGMS 예측 혈당의 MARD 값은 5.3 ± 4.0 %이다. 결과에 의하면 비채혈식 PPG-BGMS는 임상표준의 채혈식 개인용 혈당측정시스템의 순간 혈당수치와 비교하여 열등하지 않는 것으로 분석되었다.