DOI QR코드

DOI QR Code

PPG 혈당 모니터링 시스템의 분석적 평가 - 연구자 임상

Analytical Evaluation of PPG Blood Glucose Monitoring System - researcher clinical trial

  • 박철구 ((주)소프트웨어융합연구소) ;
  • 최상기 ((주)소프트웨어융합연구소) ;
  • 조성근 ((주)소프트웨어융합연구소) ;
  • 김권민 ((주)소프트웨어융합연구소)
  • 투고 : 2023.11.16
  • 심사 : 2023.12.20
  • 발행 : 2023.12.28

초록

본 연구는 모세관 혈당의 혈당값을 대조군으로 연구 참가자의 혈액 포도당을 모니티링할 때 PPG 센서와 DNN 예측알고리즘이 융합된 혈당모니터링 시스템(PPG-BGMS)의 성능을 평가하는 것이다. 연구는 2023년 9월부터 2023년 11월까지 참가자를 대상으로 실시된 연구자 임상시험이다. PPG-BGMS는 1분간의 심박수, 심박변이도 정보와 DNN 예측알고리즘을 활용한 예측된 혈당수치와 개인용혈당관리시스템의 혈당측정기로 측정한 모세관혈당 수치와 비교했다. 총 100명의 참가자 중 제2형 당뇨(T2DM) 유병인은 50명이며, 평균연령은 67세(28세~89세)이다. PPG-BGMS의 예측혈당의 100%가 Clarke 오류그리드 및 Parker(Consensus) 오류그리드의 A+B 영역에 분포하는 것으로 나타났다. PPG-BGMS 예측 혈당의 MARD 값은 5.3 ± 4.0 %이다. 결과에 의하면 비채혈식 PPG-BGMS는 임상표준의 채혈식 개인용 혈당측정시스템의 순간 혈당수치와 비교하여 열등하지 않는 것으로 분석되었다.

This study is a performance evaluation of a blood sugar monitoring system that combines a PPG sensor, which is an evaluation device for blood glucose monitoring, and a DNN algorithm when monitoring capillary blood glucose. The study is a researcher-led clinical trial conducted on participants from September 2023 to November 2023. PPG-BGMS compared predicted blood sugar levels for evaluation using 1-minute heart rate and heart rate variability information and the DNN prediction algorithm with capillary blood glucose levels measured with a blood glucose meter of the standard personal blood sugar management system. Of the 100 participants, 50 had type 2 diabetes (T2DM), and the average age was 67 years (range, 28 to 89 years). It was found that 100% of the predicted blood sugar level of PPG-BGMS was distributed in the A+B area of the Clarke error grid and Parker(Consensus) error grid. The MARD value of PPG-BGMS predicted blood glucose is 5.3 ± 4.0%. Consequentially, the non-blood-based PPG-BGMS was found to be non-inferior to the instantaneous blood sugar level of the clinical standard blood-based personal blood glucose measurement system.

키워드

참고문헌

  1. Y. Bao et al. ... Chinese Diabetes Society (2019). Chinese clinical guidelines for continuous glucose monitoring (2018 edition). Diabetes/metabolism research and reviews, 35(6), e3152. DOI : 10.1002/dmrr.3152
  2. D. Bruttomesso et al ...of the Italian Diabetes Society(SID). (2019). The use of real time continuous glucose monitoring or flash glucose monitoring in the management of diabetes: A consensus view of Italian diabetes experts using the Delphi method. Nutrition, metabolism, and cardiovascular diseases : NMCD, 29(5), 421-431. DOI : 10.1016/j.numecd.2019.01.018
  3. American Diabetes Association. (2009). Diagnosis and classification of diabetes mellitus. Diabetes Care. Jan;32 Suppl 1(Suppl 1):S62-7. DOI : 10.2337/dc09-S062.
  4. S. Hassani Zadeh, P. Boffetta & M. Hosseinzadeh. (2020). Dietary patterns and risk of gestational diabetes mellitus: A systematic review and meta-analysis of cohort studies. Clinical nutrition ESPEN, 36, 1-9. DOI : 10.1016/j.clnesp.2020.02.009
  5. M. C. Petersen & G. I. Shulman. (2018). Mechanisms of Insulin Action and Insulin Resistance. Physiological reviews, 98(4), 2133-2223. DOI : 10.1152/physrev.00063.2017
  6. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). (April 2023). Insulin Resistance & Prediabetes. https://www.niddk.nih.gov/health-information/diabetes/overview/what-isdiabetes/prediabetes-insulin-resistance.
  7. G. Wilcox. (2005). Insulin and insulin resistance. The Clinical biochemist. Reviews, 26(2), 19-39.
  8. A. K. Singh, R. Gupta, A. Ghosh & A. Misra. (2020). Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes & metabolic syndrome, 14(4), 303-310. DOI : 10.1016/j.dsx.2020.04.004
  9. W. L. Clarke. (2005). The original Clarke Error Grid Analysis (EGA). Diabetes technology & therapeutics, 7(5), 776-779. DOI : 10.1089/dia.2005.7.776
  10. W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter & S. L. Pohl. (1987). Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes care, 10(5), 622-628. DOI : 10.2337/diacare.10.5.622
  11. S. Sengupta, A. Handoo, I. Haq, K. Dahiya, S. Mehta & M. Kaushik. (2022). Clarke Error Grid Analysis for Performance Evaluation of Glucometers in a Tertiary Care Referral Hospital. Indian journal of clinical biochemistry : IJCB, 37(2), 199-205. DOI : 10.1007/s12291-021-00971-4
  12. A. Pfutzner, D.C. Klonoff, S. Pardo & J. L. Parkes. (2013). Technical Aspects of the Parkes Error Grid. Journal of Diabetes Science and Technology, 7, 1275 - 1281. https://doi.org/10.1177/193229681300700517
  13. J. Zhou, S. Zhang, L. Li, Y. Wang, W. Lu, C. Sheng, Y. Li, Y. Bao & W. Jia. (2018). Performance of a new real-time continuous glucose monitoring system: A multicenter pilot study. Journal of diabetes investigation, 9(2), 286-293. DOI : 10.1111/jdi.12699
  14. Blood Glucose Monitoring System Surveillance Program. (2023). www.diabetestechnology.org/seg/
  15. H. Mondal & S. Mondal. (2020). Clarke Error Grid Analysis on Graph Paper and Microsoft Excel. Journal of diabetes science and technology, 14(2), 499. DOI : 10.1177/1932296819890875