DOI QR코드

DOI QR Code

PBIS: A Pre-Batched Inspection Strategy for spent nuclear fuel inspection robot

  • Bongsub Song (Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Jongwon Park (Extreme Robotics Team, Korea Atomic Energy Research Institute) ;
  • Dongwon Yun (Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2023.07.01
  • Accepted : 2023.08.28
  • Published : 2023.12.25

Abstract

Nuclear power plants play a pivotal role in the global energy infrastructure, fulfilling a substantial share of the world's energy requirements in a sustainable way. The management of these facilities, especially the handling of spent nuclear fuel (SNF), necessitates meticulous inspections to guarantee operational safety and efficiency. However, the prevailing inspection methodologies lean heavily on human operators, which presents challenges due to the potential hazards of the SNF environment. This study introduces the design of a novel Pre-Batched Inspection Strategy (PBIS) that integrates robotic automation and image processing techniques to bolster the inspection process. This methodology deploys robotics to undertake tasks that could be perilous or time-intensive for humans, while image processing techniques are used for precise identification of SNF targets and regulating the robotic system. The implementation of PBIS holds considerable promise in minimizing inspection time and enhancing worker safety. This paper elaborates on the structure, capabilities, and application of PBIS, underlining its potential implications for the future of nuclear energy inspections.

Keywords

Acknowledgement

This work was supported by the BK21 FOUR (Fostering Outstanding Universities for Research) Project in Advanced Education Group for Innovative AI-based Intelligent Robotics Researchers. (No. 5120201213805).

References

  1. M.G. Bunn, J. Weeks, J.P. Holdren, A.M. MacFarlane, S.E. Pickett, A. Suzuki, T. Suzuki, Interim Storage of Spent Nuclear Fuel: A Safe, Flexible, and CostEffective Approach to Spent Fuel Management, 2001.
  2. A.B.J. Jr, Spent fuel storage experience, Nucl. Technol. 43 (1979) 165-173, https://doi.org/10.13182/NT79-A16308.
  3. F.N. von Hippel, Plutonium and reprocessing of spent nuclear fuel, Science 293 (2001) 2397-2398, https://doi.org/10.1126/science.1064667.
  4. A. Mutluer, Robotics Challenge winning design helps speed up spent fuel verification, IAEA Bull. 60-2 (2019) 22-23.
  5. D.S. Wisnubroto, H. Zamroni, R. Sumarbagiono, G. Nurliati, Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia, Nucl. Eng. Technol. 53 (2021) 549-561, https://doi.org/10.1016/j.net.2020.07.005.
  6. P. Hogselius, Spent nuclear fuel policies in historical perspective: an international comparison, Energy Pol. 37 (2009) 254-263, https://doi.org/10.1016/j.enpol.2008.09.043.
  7. K.A. Rogers, Fire in the hole: a review of national spent nuclear fuel disposal policy, Prog. Nucl. Energy 51 (2009) 281-289, https://doi.org/10.1016/j.pnucene.2008.09.004.
  8. R. Ratiko, D.S. Wisnubroto, N. Nasruddin, T.M.I. Mahlia, Current and future strategies for spent nuclear fuel management in Indonesia, Energy Strategy Rev. 32 (2020), 100575, https://doi.org/10.1016/j.esr.2020.100575.
  9. Y. Zhou, China's spent nuclear fuel management: current practices and future strategies, Energy Pol. 39 (2011) 4360-4369, https://doi.org/10.1016/j.enpol.2011.04.055.
  10. M. Mayorov, T. White, A. Lebrun, J. Brutscher, J. Keubler, A. Birnbaum, V. Ivanov, T. Honkamaa, P. Peura, J. Dahlberg, Gamma emission Tomography for the inspection of spent nuclear fuel, in: 2017 IEEE Nucl. Sci. Symp. Med. Imaging Conf. NSSMIC, 2017, pp. 1-2, https://doi.org/10.1109/NSSMIC.2017.8533017.
  11. M. Fisher, New safeguards tool bolsters IAEA's verification of spent nuclear fuel, IAEA Bull. 60-1 (2019) 33.
  12. T. Honkamaa, F. Levai, R. Berndt, P. Schwalbach, S. Vaccaro, A. Turunen, A Prototype for Passive Gamma Emission Tomography, International Atomic Energy Agency (IAEA), 2015. http://inis.iaea.org/search/search.aspx?orig_q=RN:46066176.
  13. E.M. Attas, J.D. Chen, G.J. Young, A Cherenkov viewing device for used-fuel verification, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 299 (1990) 88-93, https://doi.org/10.1016/0168-9002(90)90753-S.
  14. E. Brayfindley, R.C. Smith, J. Mattingly, R. Brigantic, Automated defect detection in spent nuclear fuel using combined cerenkov radiation and gamma emission Tomography data, Nucl. Technol. 204 (2018) 343-353, https://doi.org/10.1080/00295450.2018.1490123.
  15. E. Branger, P. Jansson, S. Grape, S.J. Svard, Improved Cherenkov Light Prediction Model for Enhanced DCVD Performance, International Atomic Energy Agency (IAEA), 2018.
  16. M. Wang, X. Long, P. Chang, T. Padlr, Autonomous robot navigation with rich information mapping in nuclear storage environments, in: 2018 IEEE Int. Symp. Saf. Secur. Rescue Robot. SSRR, 2018, pp. 1-6, https://doi.org/10.1109/SSRR.2018.8468634.
  17. B. Song, J. Park, D. Yun, Depth-adaptive controller for spent nuclear fuel inspections, Nucl. Eng. Technol. 52 (2020) 1669-1676, https://doi.org/10.1016/j.net.2020.01.019.
  18. J. Wagman, T. Nicula-Golovei, The evolution of safeguards technology, IAEA Bull. 63-3 (2022) 14-15.
  19. T.T. Mac, C. Copot, D.T. Tran, R. De Keyser, Heuristic approaches in robot path planning: a survey, Robot. Autonom. Syst. 86 (2016) 13-28, https://doi.org/10.1016/j.robot.2016.08.001.
  20. T. Sang, J. Xiao, J. Xiong, H. Xia, Z. Wang, Path planning method of unmanned surface vehicles formation based on improved A* algorithm, J. Mar. Sci. Eng. 11 (2023) 176, https://doi.org/10.3390/jmse11010176.
  21. C.H. Song, Global path planning method for USV system based on improved ant colony algorithm, Appl. Mech. Mater. 568-570 (2014) 785-788. https://doi.org/10.4028/www.scientific.net/AMM.568-570.785.
  22. Y. Chen, G. Bai, Y. Zhan, X. Hu, J. Liu, Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning, IEEE Access 9 (2021) 40728-40742, https://doi.org/10.1109/ACCESS.2021.3062375.
  23. J.D. Werner, US Spent Nuclear Fuel Storage, Congressional Research Service, Washington, DC, 2012.
  24. L. Rockwood, Legal Framework for IAEA Safeguards, 2013.
  25. IAEA, Nuclear Power Reactors in the World: 2015 Edition, IAEA, Vienna, 2015. http://public.eblib.com/choice/publicfullrecord.aspx?p=4853270. (Accessed 27 February 2020).
  26. A. Kokaram, Image and Video Processing, (n.d.) 22..
  27. S. Suzuki, K. be, Topological structural analysis of digitized binary images by border following, Comput. Vis. Graph Image Process 30 (1985) 32-46, https://doi.org/10.1016/0734-189X(85)90016-7.
  28. D.K. Prasad, M.K.H. Leung, C. Quek, S.-Y. Cho, A novel framework for making dominant point detection methods non-parametric, Image Vis Comput. 30 (2012) 843-859, https://doi.org/10.1016/j.imavis.2012.06.010.