• Title/Summary/Keyword: Autonomous in nuclear field

Search Result 11, Processing Time 0.033 seconds

Autonomous exploration for radioactive sources localization based on radiation field reconstruction

  • Xulin Hu;Junling Wang;Jianwen Huo;Ying Zhou;Yunlei Guo;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1153-1164
    • /
    • 2024
  • In recent years, unmanned ground vehicles (UGVs) have been used to search for lost or stolen radioactive sources to avoid radiation exposure for operators. To achieve autonomous localization of radioactive sources, the UGVs must have the ability to automatically determine the next radiation measurement location instead of following a predefined path. Also, the radiation field of radioactive sources has to be reconstructed or inverted utilizing discrete measurements to obtain the radiation intensity distribution in the area of interest. In this study, we propose an effective source localization framework and method, in which UGVs are able to autonomously explore in the radiation area to determine the location of radioactive sources through an iterative process: path planning, radiation field reconstruction and estimation of source location. In the search process, the next radiation measurement point of the UGVs is fully predicted by the design path planning algorithm. After obtaining the measurement points and their radiation measurements, the radiation field of radioactive sources is reconstructed by the Gaussian process regression (GPR) model based on machine learning method. Based on the reconstructed radiation field, the locations of radioactive sources can be determined by the peak analysis method. The proposed method is verified through extensive simulation experiments, and the real source localization experiment on a Cs-137 point source shows that the proposed method can accurately locate the radioactive source with an error of approximately 0.30 m. The experimental results reveal the important practicality of our proposed method for source autonomous localization tasks.

Strategy to coordinate actions through a plant parameter prediction model during startup operation of a nuclear power plant

  • Jae Min Kim;Junyong Bae;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.839-849
    • /
    • 2023
  • The development of automation technology to reduce human error by minimizing human intervention is accelerating with artificial intelligence and big data processing technology, even in the nuclear field. Among nuclear power plant operation modes, the startup and shutdown operations are still performed manually and thus have the potential for human error. As part of the development of an autonomous operation system for startup operation, this paper proposes an action coordinating strategy to obtain the optimal actions. The lower level of the system consists of operating blocks that are created by analyzing the operation tasks to achieve local goals through soft actor-critic algorithms. However, when multiple agents try to perform conflicting actions, a method is needed to coordinate them, and for this, an action coordination strategy was developed in this work as the upper level of the system. Three quantification methods were compared and evaluated based on the future plant state predicted by plant parameter prediction models using long short-term memory networks. Results confirmed that the optimal action to satisfy the limiting conditions for operation can be selected by coordinating the action sets. It is expected that this methodology can be generalized through future research.

A study on autonomous Cleaning Robot for Hot-cell Application (핫셀 적용을 위한 벽면주행 청소로봇에 관한 연구)

  • 한상현;김기호;박장진;장원석;이응혁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.415-415
    • /
    • 2000
  • The functions of a mobile robot such as obstacle knowledge and collision avoidance for in-door cleaning are necessary features, as has been much studied in the field of industrial automatic guided vehicle or general mobile robot. A mobile robot, in order to avoid collision with obstacles, has to gather data with environment knowledge sensors and recognize environment and the shape of obstacles from the data. In the study, a wall-following algorithm was suggested as a autonomous moving algorithm in which a mobile robot can recognize obstacles in indoor like environment and do cleaning work in effect. The system suggested in the study is for cleaning of nuclear material dusts generated in the process of nuclear fuel manufacturing and decontamination of devices in disorder which is performed in M6 radioactive ray shield hot-cell in IMEF(Irradiated Material Examination Facility) in the Korea Atomic Energy Research Institute.

  • PDF

PBIS: A Pre-Batched Inspection Strategy for spent nuclear fuel inspection robot

  • Bongsub Song;Jongwon Park;Dongwon Yun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4695-4702
    • /
    • 2023
  • Nuclear power plants play a pivotal role in the global energy infrastructure, fulfilling a substantial share of the world's energy requirements in a sustainable way. The management of these facilities, especially the handling of spent nuclear fuel (SNF), necessitates meticulous inspections to guarantee operational safety and efficiency. However, the prevailing inspection methodologies lean heavily on human operators, which presents challenges due to the potential hazards of the SNF environment. This study introduces the design of a novel Pre-Batched Inspection Strategy (PBIS) that integrates robotic automation and image processing techniques to bolster the inspection process. This methodology deploys robotics to undertake tasks that could be perilous or time-intensive for humans, while image processing techniques are used for precise identification of SNF targets and regulating the robotic system. The implementation of PBIS holds considerable promise in minimizing inspection time and enhancing worker safety. This paper elaborates on the structure, capabilities, and application of PBIS, underlining its potential implications for the future of nuclear energy inspections.

Depth-adaptive controller for spent nuclear fuel inspections

  • Song, Bongsub;Park, Jongwon;Yun, Dongwon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1669-1676
    • /
    • 2020
  • The IAEA held the IAEA Robotics Challenge 2017 (IRC2017) to protect workers during inspections of spent nuclear fuel and to improve work efficiency and accuracy rates. To this end, we developed an unmanned surface vehicle (USV) system called the spent fuel check vehicle (SCV). The SCV extracts and tracks the target through image processing, and it is necessary to find suitable parameters for the SNF storage environment in advance. This preliminary work takes time. It is also difficult to prepare the environment in which the work will proceed. In addition, if the preliminary work does not proceed as planned, the system will not move at the proper speed and will become unstable, with yawing and overshoot. To solve this problem, we developed a controller with a camera that can extract the depth at which the target is stored and allow distance-adaptive control. This controller is able to attenuate system instability factors such as yawing and overshoot better than existing controllers by continuously changing system operation parameters according to the depth. In addition, the time required for preliminary work during inspections can be shortened.

Robust Force Control of Electro-hydraulic Manipulator in the Field Task

  • Cho, Yong-Rae;Ahn, Kyoung-Kwan;Yang, Soon-Yong;Lee, Byung-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.134.4-134
    • /
    • 2001
  • Hydraulically driven manipulators are superior to electrically driven ones in the power density and electrical insulation. But an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous field tasks such as the maintenance task of high voltage active electric line or the automatic excavation task by hydraulic excavator. In this report, we propose robust force control algorithm, which can be applied to the real field task such as the construction field, nuclear plant and so on. Proposed force controller has the same structure as that of disturbance observer for position control. The difference between force and position disturbance ...

  • PDF

Study on the digitalization of trip equations including dynamic compensators for the Reactor Protection System in NPPs by using the FPGA

  • Kwang-Seop Son;Jung-Woon Lee;Seung-Hwan Seong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2952-2965
    • /
    • 2023
  • Advanced reactors, such as Small Modular Reactors or existing Nuclear Power Plants, often use Field Programmable Gate Array (FPGA) based controllers in new Instrumentation and Control (I&C) system architectures or as an alternative to existing analog-based I&C systems. Compared to CPU-based Programmable Logic Controllers (PLCs), FPGAs offer better overall performance. However, programming functions on FPGAs can be challenging due to the requirement for a hardware description language that does not explicitly support the operation of real numbers. This study aims to implement the Reactor Trip (RT) functions of the existing analog-based Reactor Protection System (RPS) using FPGAs. The RT equations for Overtemperature delta Temperature and Overpower delta Temperature involve dynamic compensators expressed with the Laplace transform variable, 's', which is not directly supported by FPGAs. To address this issue, the trip equations with the Laplace variable in the continuous-time domain are transformed to the discrete-time domain using the Z-transform. Additionally, a new operation based on a relative value for the equation range is introduced for the handling of real numbers in the RT functions. The proposed approach can be utilized for upgrading the existing analog-based RPS as well as digitalizing control systems in advanced reactor systems.

The radiation shielding proficiency and hyperspectral-based spatial distribution of lateritic terrain mapping in Irikkur block, Kannur, Kerala

  • S. Arivazhagan;K.A. Naseer;K.A. Mahmoud;N.K. Libeesh;K.V. Arun Kumar;K.ChV. Naga Kumar;M.I. Sayyed;Mohammed S. Alqahtani;E. El Shiekh;Mayeen Uddin Khandaker
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3268-3276
    • /
    • 2023
  • The practice of identifying the potential zones for mineral exploration in a speedy and low-cost method includes the use of satellite imagery analysis as a part of remote sensing techniques. It is challenging to explore the iron mineralization of a region through conventional methods which are a time-consuming process. The current study utilizes the Hyperion satellite imagery for mapping the iron mineralization and associated geological features in the Irikkur region, Kannur, Kerala. Along with the remote sensing results, the field study and laboratory-based analysis were conducted to retrieve the ground truth point and geochemical proportion to verify the iron ore mineralization. The MC simulation showed for shielding properties indicate an increase in the linear attenuation coefficient with raising the Fe2O3+SiO2 concentrations in the investigated rocks where it is varied at 0.662 MeV in the range 0.190 cm-1 - 0.222 cm-1 with rising the Fe2O3+SiO2 content from 57.86 wt% to 71.15 wt%. The analysis also revealed that when the γ-ray energy increased from 0.221 MeV to 2.506 MeV, sample 1 had the largest linear attenuation coefficient, ranging from 9.33 cm1 to 0.12 cm-1. Charnockite rocks were found to have exceptional shielding qualities, making them an excellent natural choice for radiation shielding applications.

Force Control of one pair of 6-Link Electro-Hydraulic Manipulators (한 쌍의 6축 전기유압 매니퓰레이터의 힘제어)

  • 안경관;조용래;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.353-356
    • /
    • 1997
  • Hydraulically driven manipulators are superior to electrically driven ones in the power density and electrical insulation. But an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and this parameter fluctuations are greater than those of electrically driven manipulator. So this is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous field task such as the maintenance task of high voltage active electric line or the automatic excavation task by hydraulic excavator. In this report, we propose robust force control algorithm, which can be applied to there real field task such as the construction field, nuclear plant and so on. Proposed force controller has the same structure as that of disturbance observe for position control. The difference between force and position disturbance observer is that the input and output of disturbance observer are forces in the case force disturbance observer and the plant varies much compared to the case of position control. In the design of force disturbance observer, generalized plant is derived and the stabilized filter is designed by H infinity control theory to ensure the robuts t stability even though the stiffness of environment changes from sponge to steel, and the contact surface also changes from flat to round shape. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.

  • PDF

Evaluation of 475 ℃ embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements

  • Gutierrez-Vargas, Gildardo;Ruiz, Alberto;Lopez-Morelos, Victor H.;Kim, Jin-Yeon;Gonzalez-Sanchez, Jorge;Medina-Flores, Ariosto
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2982-2989
    • /
    • 2021
  • One of the consequences of the 475 ℃ embrittlement of duplex stainless steels is the reduction of the resistance to localized corrosion. Therefore, the detection of this type of embrittlement before the material exhibits significant loss in toughness, and corrosion resistance is important to ensure the structural integrity of critical components under corrosion threats. In this research, conductivity measurements are performed using the alternating current potential drop (ACPD) technique with using a portable four-point probe as a nondestructive evaluation (NDE) method for detecting the embrittlement in a 2507 (UNS S32750) super duplex stainless steel (SDSS) aged at 475 ℃ from as-received condition to 300 h. The electric conductivity results were compared against two electrochemical tests namely double loop electrochemical potentiokinetic reactivation (DL-EPR) and critical pitting temperature (CPT). Mechanical tests and the microstructure characterized using scanning electron microscopy (SEM) imaging are conducted to track the progress of embrittlement. It is shown that the electric conductivity correlates with the changes in impact energy, microhardness, and CPT corrosion tests result demonstrating the feasibility of the four-point probe as a possible field-deployable method for evaluating the 475 ℃ embrittlement of 2507 SDSS.