DOI QR코드

DOI QR Code

Effects of Frequency Type on Muscle Function of the Thigh during Electrical Muscle Stimulation

전기근육자극 시 주파수 차이가 대퇴 근육 기능에 미치는 영향

  • Woen-Sik Chae (Department of Physical Education, Kyungpook National University) ;
  • Jae-Hu Jung (Department of Physical Education, Kyungpook National University)
  • Received : 2023.02.09
  • Accepted : 2023.03.08
  • Published : 2023.03.31

Abstract

Objective: The purpose of this study was to investigate the effects of different frequency on of knee extensors muscle function during electrical muscle stimulation (EMS). Method: In this research, 40 subjects who have no musculoskeletal disorder, and less than a year workout experience were recruited in order to analyze effects of EMS with different stimulus frequency. Forty subjects were randomly divided into four groups of ten subjects in each group. A EMS training program with different frequencies (without EMS [WE], EMS with frequency 30 Hz [E30], EMS with frequency 60 Hz [E60], EMS with frequency 90 Hz [E90]) was assigned to each group. Throughout eight weeks of training, test subjects were simultaneously carried out knee extension exercises such as squat, leg extension, and leg-press while using EMS with different frequency (20 min, pulse width 250 ㎲, on-off ratio 1:1). Isokinetic knee extension strength, muscle activity of the rectus femoris (RF), the vastus medialis (VM), and the vastus lateralis (VL), and the median frequency of the RF, the VM, and the VL were collected and compared between pre and post training in order to find effects of applying EMS with different frequencies. For each dependent variable, a one-way ANOVA was to determine whether there were significant differences among four different conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results: When compared to WE and E90, E30 causes significant increase in isokinetic knee extension strength. No significant differences were found in EMG values across different EMS conditions. However, the median frequency of the VM in E30 was significantly increased than the corresponding value for WE. Conclusion: The results of this study showed that EMS training with 30 Hz frequency had positive effect on knee extensor. Based of the findings of the present study, EMS training with lower frequency may help the performer to focus on developing strength in knee extensor muscles.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2018S1A5A2A01038478).

References

  1. Alley, K. A. & Thompson, L. V. (1997). Influence of simulated bed rest and intermittent weight bearing on single skeletal muscle fiber function in aged rats. Archives of Physical Medicine and Rehabilitation, 78(1), 19-25. https://doi.org/10.1016/S0003-9993(97)90004-6
  2. Baker, S. N., Spinks, R., Jackson, A. & Lemon, R. N. (2001). Synchronization in monkey motor cortex during a precision grip task. I. Task-dependent modulation in single-unit synchrony. Journal of Neurophysiology, 85(2), 869-885. https://doi.org/10.1152/jn.2001.85.2.869
  3. Binder-Macleod, S. A. & Snyder-Mackler, L. (1993). Muscle fatigue: clinical implications for fatigue assessment and neuromuscular electrical stimulation. Physical Therapy, 73(12), 902-910. https://doi.org/10.1093/ptj/73.12.902
  4. Chae, W. S., Lee, H. A., Kim, J. G. & Jung, J. H. (2020). Effects of applying EMS on femoral musculoskeletal system according to different types of muscular contraction. Journal of Coaching Development, 22(2), 178-185. https://doi.org/10.47684/jcd.2020.06.22.2.178
  5. Chekanov, V., Rayel, R., Krum, D., Alwan, I., Hare, J., Bajwa, T. & Akhtare, M. (2002). Electrical stimulation promotes angiogenesis in a rabbit hind-limb ischemia model. Vascular and Endovascular Surgery, 36(5), 357-366. https://doi.org/10.1177/153857440203600505
  6. Cho, W. S., Kim, M. Y., Lee, K. C., Junh, H. & Lee, W. L. (2005). Sports injury around knee joint. The Korea Journal of Sports Medicine, 23(1), 24-29.
  7. Cooper, R. L., Taylor, N. F. & Feller, J. A. (2005). A randomised controlled trial of proprioceptive and balance training after surgical reconstruction of the anterior cruciate ligament. Research in Sports Medicine, 13(3), 217-230. https://doi.org/10.1080/15438620500222547
  8. Delitto, A., Brown, M., Strube, M. J., Rose, S. J. & Lehman, R. C. (1989). Electrical stimulation of quadriceps femoris in an elite weight lifter: a single subject experiment. International Journal of Sports Medicine, 10(03), 187-191. https://doi.org/10.1055/s-2007-1024898
  9. Doucet, B. M., Lam, A. & Griffin, L. (2012). Neuromuscular electrical stimulation for skeletal muscle function. Yale Journal of Biology and Medicine, 85(2), 201-215.
  10. Fisher, K. M., Zaaimi, B., Williams, T. L., Baker, S. N. & Baker, M. R. (2012). Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease. Brain, 135(9), 2849-2864. https://doi.org/10.1093/brain/aws150
  11. Ford, K. R., Myer, G. D. & Hewett, T. E. (2003). Valgus knee motion during landing in high school female and male basketball players. Medicine and Science in Sports and Exercise, 35(10), 1745-1750.
  12. Gaines, J. M., Metter, E. J. & Talbot, L. A. (2004). The effect of neuromuscular electrical stimulation on arthritis knee pain in older adults with osteoarthritis of the knee. Applied Nursing Research, 17(3), 201-206.
  13. Gerdle, B., Karlsson, S., Crenshaw, A. G., Elert, J. & Friden, J. (2000). The influences of muscle fibre proportions and areas upon EMG during maximal dynamic knee extensions. European Journal of Applied Physiology, 81(1-2), 2-10. https://doi.org/10.1007/PL00013792
  14. Gondin, J., Cozzone, P. J. & Bendahan, D. (2011). Is highfrequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes?. European Journal of Applied Physiology, 111, 2473-2487.
  15. Graham, N. M., Shanahan, M. D., Barry, P., Burgert, S. & Talkhani, I. (2000). Postoperative analgesia after arthroscopic knee surgery: a randomized, prospective, double-blind study of intravenous regional analgesia versus intra-articular analgesia. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 16(1), 64-66. https://doi.org/10.1016/S0749-8063(00)90129-4
  16. Grice, A., Kingsbury, S. R. & Conaghan, P. G. (2014). Nonelite exercise-related injuries: Participant reported frequency, management and perceptions of their consequences. Scandinavian Journal of Medicine & Science in Sports, 24(2), e86-e92. https://doi.org/10.1111/sms.12115
  17. Kaplan, R. E., Czyrny, J. J., Fung, T. S., Unsworth, J. D. & Hirsh, J. (2002). Electrical foot stimulation and implications for the prevention of venous thromboembolic disease. Thrombosis and Haemostasis, 88(2), 200-204. https://doi.org/10.1055/s-0037-1613187
  18. Kim, D. K. (2012). Effect of pre-operative home-based exercise on knee strength and proprioceptive functions after anterior cruciate ligament reconstruction. The Asian Journal of Kinesiology, 14(1), 57-65.
  19. Lim, B. O. (2007). Does a knee brace decrease recurrent anterior cruciate ligament injuries? Health & sports medicine; Official Journal of KACEP, 9(1), 103-109.
  20. Mang, C. S., Lagerquist, O. & Collins, D. F. (2010). Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency. Experimental Brain Research, 203(1), 11-20. https://doi.org/10.1007/s00221-010-2202-x
  21. Mir, S. M., Hadian, M. R., Talebian, S. & Nasseri, N. (2008). Functional assessment of knee joint position sense following anterior cruciate ligament reconstruction. British Journal of Sports Medicine, 42(4), 300-303.
  22. Mizrahi, J., Levin, O., Aviram, A., Isakov, E. & Susak, Z. (1997). Muscle fatigue in interrupted stimulation: effect of partial recovery on force and EMG dynamics. Journal of Electromyography and Kinesiology, 7(1), 51-65. https://doi.org/10.1016/S1050-6411(96)00018-1
  23. Park, J. L. (2015). The effects of electrical muscle stimulation on the muscular function and balance ability. Ph.D. Dissertation, Kyung Hee University.
  24. Pekindil, Y., Sarikaya, A., Birtane, M., Pekindil, G. & Salan, A. (2001). 99mTc-sestamibi muscle scintigraphy to assess the response to neuromuscular electrical stimulation of normal quadriceps femoris muscle. Annals of Nuclear Medicine, 15(4), 397-401. https://doi.org/10.1007/BF02988252
  25. Petersen, N. T., Taylor, J. L. & Gandevia, S. C. (2002). The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii. The Journal of Physiology, 544(1), 277-284. https://doi.org/10.1113/jphysiol.2002.024539
  26. Pichon, F., Chatard, J. C., Martin, A. & Cometti, G. (1995). Electrical stimulation and swimming performance. Medicine and Science in Sports and Exercise, 27(12), 1671-1676.
  27. Potvin, J. R. & Bent, L. R. (1997). A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks. Journal of Electromyography and Kinesiology, 7(2), 131-139. https://doi.org/10.1016/S1050-6411(96)00025-9
  28. Reyes, A., Laine, C. M., Kutch, J. J. & Valero-Cuevas, F. J. (2017). Beta band corticomuscular drive reflects muscle coordination strategies. Frontiers in Computational Neuroscience, 11, 17.
  29. Rezaeimanesh, D. & Farsani, P. A. (2011). The effect of a 6 week isotonic training period on lower body muscle EMG changes in volleyball players. Procedia-Social and Behavioral Sciences, 30, 2129-2133. https://doi.org/10.1016/j.sbspro.2011.10.413
  30. Stevens, J. E., Mizner, R. L. & Snyder-Mackler, L. (2004). Neuromuscular electrical stimulation for quadriceps muscle strengthening after bilateral total knee arthroplasty: a case series. Journal of Orthopaedic & Sports Physical Therapy, 34(1), 21-29. https://doi.org/10.2519/jospt.2004.34.1.21
  31. Theriault, R., Boulay, M. R., Theriault, G. & Simoneau, J. A. (1996). Electrical stimulation-induced changes in performance and fiber type proportion of human knee extensor muscles. European Journal of Applied Physiology and Occupational Physiology, 74(4), 311-317. https://doi.org/10.1007/BF02226926
  32. U. S. Department of Health and Human Services (1993). Selected topics in surface electromyography for use in the occupational setting: Expert perspectives. (DHHS Publication No. 91-100). Washington, DC: U.S. Government Printing Office.
  33. Vanderthommen, M. & Duchateau, J. (2007). Electrical stimulation as a modality to improve performance of the neuromuscular system. Exercise and Sport Sciences Reviews, 35(4), 180-185. https://doi.org/10.1097/jes.0b013e318156e785
  34. Vanderthommen, M., Depresseux, J. C., Dauchat, L., Degueldre, C., Croisier, J. L. & Crielaard, J. M. (2002). Blood flow variation in human muscle during electrically stimulated exercise bouts. Archives of Physical Medicine and Rehabilitation, 83(7), 936-941. https://doi.org/10.1053/apmr.2002.33226
  35. Won, K. H., Kim, C. & Kim, C. K. (2001). Effects of electromyostimulation and weight training on muscle morphology and function. Korean Journal of Physical Education, 40(1), 490-498.
  36. Yun, S. J. & Kim, J. H. (2011). The effects of peak torque and angle of peak torque on isometric training depending on degrees. Korean Society for Wellness, 6(2), 263-273.