DOI QR코드

DOI QR Code

A study on Survive and Acquisition for YouTube Partnership of Entry YouTubers using Machine Learning Classification Technique

머신러닝 분류기법을 활용한 신생 유튜버의 생존 및 수익창출에 관한 연구

  • Hoik Kim (Business School, Sungkyunkwan University) ;
  • Han-Min Kim (Business School, Korea University)
  • 김호익 (성균관대학교 경영대학 ) ;
  • 김한민 (고려대학교 경영대학 )
  • Received : 2022.10.24
  • Accepted : 2023.03.03
  • Published : 2023.05.31

Abstract

This study classifies the success of creators and YouTubers who have created channels on YouTube recently, which is the most influential digital platform. Based on the actual information disclosure of YouTubers who are in the field of science and technology category, video upload cycle, video length, number of selectable multilingual subtitles, and information from other social network channels that are being operated, the success of YouTubers using machine learning was classified and analyzed, which is the closest to the YouTube revenue structure. Our findings showed that neural network algorithm provided the best performance to predict the success or failure of YouTubers. In addition, our five factors contributed to improve the performance of the classification. This study has implications in suggesting various approaches to new individual entrepreneurs who want to start YouTube, influencers who are currently operating YouTube, and companies who want to utilize these digital platforms. We discuss the future direction of utilizing digital platforms.

본 연구는 목적은 디지털 플랫폼인 YouTube에서 최근 채널을 만든 크리에이터와 유튜버의 성공 여부를 분류 분석을 통해 알아보고자 함이다. 이를 위하여 과학기술 카테고리의 유튜버 채널 실제 정보들을 바탕으로 평균 동영상 업로드 횟수, 평균 영상 길이, 선택 가능한 다국어 자막 개수, 운영 중인 다른 소셜 네트워크 채널의 정보를 식별하였다. 식별한 정보와 머신러닝 기법을 활용하여 초기 유튜버들의 성공 여부인 수익창출 여부를 분류 분석하였으며, 분석결과, 인공 신경망 알고리즘이 초기 유튜버의 성공 또는 실패를 예측하는 데 가장 정확한 결과를 제공하고 있음을 발견했다. 또한, 제시된 다섯 가지 요인은 분석결과 향상에 기여하는 것으로 나타났다. 본 연구는 유튜브를 시작하고자 하는 신규 개인 창업가, 현재 유튜브를 운영하고 있는 인플루언서, 이러한 디지털 플랫폼을 활용하고자 하는 기업들에게 디지털 플랫폼의 다양한 접근 방식과 활용 방향에 대해 제언한다.

Keywords

References

  1. 공다솜, "국내 유튜버 1인당 연간 광고 수입 1억원 넘어", JTBC, 2022.09.13., Available at: https://news.jtbc.co.kr/article/article.aspx?news_id=NB12076218. 
  2. 남궁선희, "국제사이버대학교, 2023학년도 1학기 신, 편입생 모집", 매일경제, 2022.12.01., Available at: https://www.mk.co.kr/news/society/10551401. 
  3. 남궁양숙, "2021 초, 중등 진로교육 현황조사 결과 발표", 교육부, 2022.01.18., Available at: https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=294&lev=0&statusYN=W&s=moe&m=020402&opType=N&boardSeq=90414. 
  4. 박아영, "대한노인회 충북연합회, 경로당 어르신에 유튜브 교육 실시", 백세시대, 2021.10.10, Available at: http://www.100ssd.co.kr/news/articleView.html?idxno=81249. 
  5. 유튜브 파트너쉽 프로그램 공식자료, "YouTu be Partner Program overview & eligibility", 2022. 03.10., Available at: https://support.google.com/youtube/answer/72851?hl=en. 
  6. 이원배, "직장인 부업으로 유튜버 해도 되나...법상 규정 없지만, 업무 지장 있으면 제한 가능성", 브릿지경제, 2022.11.14., Available at: https://www.viva100.com/main/view.php?key=20221114010004140. 
  7. 인스타그램 공식자료, "Instagram의 동영상 업로드 요구 사항", 2022, Available at: https://ko-kr.facebook.com/help/instagram/1038071743007909/?helpref=uf_share. 
  8. Abbasi, A., C. Albrecht, A. Vance, and J. Hansen, "Metafraud: A meta-learning framework for detecting financial fraud", Mis Quarterly, Vol.36, No.4, 2012, pp. 1293-1327.  https://doi.org/10.2307/41703508
  9. Albrecht, C. M., C. Backhaus, H. Gurzki, and D. M. Woisetschlager, "Drivers of brand extension success: What really matters for luxury brands", Psychology & Marketing, Vol.30, No.8, 2013, pp. 647-659.  https://doi.org/10.1002/mar.20635
  10. Abbasi, A., Albrecht, C., A. Vance, and J. Hansen, "Metafraud: A meta-learning framework for detecting financial fraud", Mis Quarterly, Vol.36, No.4, 2012, pp. 1293-1327.  https://doi.org/10.2307/41703508
  11. Albrecht, C. M., C. Backhaus, H. Gurzki, and D. M. Woisetschlager, "Drivers of brand extension success: What really matters for luxury brands", Psychology & Marketing, Vol.30, No.8, 2013, pp. 647-659.  https://doi.org/10.1002/mar.20635
  12. Arenas-Gaitan, J., F. J. Rondan-Cataluna, and P. E. Ramirez-Correa, "Antecedents of WOM: SNS-user segmentation", Journal of Research in Interactive Marketing, Vol.12, No.1, 2018, pp. 105-124.  https://doi.org/10.1108/JRIM-07-2017-0052
  13. Bakhshi, S., D. Shamma, and E. Gilbert, "Faces engage us: Photos with faces attract more likes and comments on Instagram", CHI '14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2014, pp. 965-974. 
  14. Bashar, A. and M. Wasiq, "Effectiveness of social media as a marketing tool: An empirical study", International Journal of Marketing, Financial Services & Management Research, Vol.1, No.11, 2012, pp. 88-99. 
  15. Basil, M. D., "Identification as a mediator of celebrity effects", Journal of Broadcasting & Electronic Media, Vol.40, No.4, 1996, pp. 478-495.  https://doi.org/10.1080/08838159609364370
  16. Chalmers, D., R. Matthews, and A. Hyslop "Blockchain as an external enabler of new venture ideas: Digital entrepreneurs and the disintermediation of the global music industry", Journal of Business Research, Vol.125, 2021, pp. 577-591.  https://doi.org/10.1016/j.jbusres.2019.09.002
  17. Chen, C. P., "Exploring personal branding on YouTube", Journal of Internet Commerce, Vol.12, No.4, 2013, pp. 332-347.  https://doi.org/10.1080/15332861.2013.859041
  18. Clarke, J., Chen, H., D. Du, and Y. J. Hu, "Fake news, investor attention, and market reaction", Information Systems Research, Vol.32, No.1, 2020, pp. 35-52.  https://doi.org/10.1287/isre.2019.0910
  19. Cortes, C. and V. Vapnik, "Support-vector networks", Machine Learning, Vol.20, No.3, 1995, pp. 273-297.  https://doi.org/10.1007/BF00994018
  20. Dong, J. Q., "Moving a mountain with a teaspoon: Toward a theory of digital entrepreneurship in the regulatory environment", Technological Forecasting & Social Change, Vol.146, 2019, pp. 923-930.  https://doi.org/10.1016/j.techfore.2018.07.050
  21. Folkvord, F., K. E. Bevelander, E. Rozendaal, and R. Hermans, "Children's bonding with popular YouTube vloggers and their attitudes toward brand and product endorsements in vlogs: An explorative Study", Young Consumers, Vol.20, No.2, 2019, pp. 77-90.  https://doi.org/10.1108/YC-12-2018-0896
  22. Guido, G., M. Pichierri, G. Pino, and R. Nataraajan, "Effect of face images and face pareidolia on consumers' responses to print advertising", Journal of Advertising Research, Vol.59, No.2, 2019, pp. 219-231.  https://doi.org/10.2501/JAR-2018-030
  23. Holmbom, M., The Youtuber: A qualitative study of popular content creators, 2015. 
  24. Hosmer, D. W. and S. Lemeshow, Applied Logistic Regression, John Wiley & Sons. New York, 2000. 
  25. Hyun, H., J. Park, and D. Kim, "The Effect of Extended Brand Equity on Willingness to Pay Premium Price", Journal of Channel and Retailing, Vol.24, No.4, 2019, pp. 131-151.  https://doi.org/10.17657/jcr.2019.10.31.6
  26. Incross, "Video platform usage data released, YouTube dominates the rankings", 2020, Available at: https://www.incross.com/pr-center/press-release/?mod=document&uid=212. 
  27. Kaytez, F., M. C. Taplamacioglu, E. Cam, and F. Hardalac, "Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines", International Journal of Electrical Power & Energy Systems, Vol.67, 2015, pp. 431-438.  https://doi.org/10.1016/j.ijepes.2014.12.036
  28. Kiguchi, M., W. Saeed, and I. Medi, "Churn prediction in digital game-based learning using data mining techniques: Logistic regression, decision tree, and random forest", Applied Soft Computing, Vol.118, 2022, 108491. 
  29. Kim, Y., B. Park, and G. Kim, "Introduction to Building and Service of the Fire Safety Big Data Platform in Korea", In 2021 International Conference on Information and Communication Technology Convergence (ICTC), 2021, pp. 584-586. 
  30. Lehong, H., C. Howard, D. Gaughan, and D. Logan, Building a Digital Business Technology Platform, Gartner, 2016. 
  31. Li, J. and C. Su, "How face influences consumption: A comparative study of American and Chinese consumers", International Journal of Market Research, Vol.49, No.2, 2007, pp. 237-256.  https://doi.org/10.1177/147078530704900207
  32. Liu, Q. and S. K. Yu, "A study the factors influencing the acceptance of K-pop short-form video created by Chinese influencers: Focusing on Chinese TikTok users", The Journal of the Korea Contents Association, Vol.22, No.4, 2022, pp. 28-36.  https://doi.org/10.5392/JKCA.2022.22.04.028
  33. Liao, J. and L. Wang, "Face as a mediator of the relationship between material value and brand consciousness", Psychology & Marketing, Vol.26, No.11, 2009, pp. 987-1001.  https://doi.org/10.1002/mar.20309
  34. Little, A., M. Burt, and D. Perrett, "What is good is beautiful: Face preference reflects desired personality", Personality and Individual Differences, Vol.41, 2006, pp. 1107-1118.  https://doi.org/10.1016/j.paid.2006.04.015
  35. Lipsky, L. M. and R. J. Iannotti, "Associations of television viewing with eating behaviors in the 2009 health behaviour in school-aged children study", Archives of Pediatrics & Adolescent Medicine, Vol.166, No.5, 2012, pp. 465-472.  https://doi.org/10.1001/archpediatrics.2011.1407
  36. Nobre, H. and D. Silva, "Social network marketing strategy and SME strategy benefits", Journal of Transnational Management, Vol.19, No.2, 2014, pp. 138-151.  https://doi.org/10.1080/15475778.2014.904658
  37. Nelson, M. R., "Research on children and advertising then and now: Challenges and opportunities for future research", Journal of Advertising, Vol.47, No.4, 2018, pp. 301-308.  https://doi.org/10.1080/00913367.2018.1552218
  38. Neter, J., W. Wasserman, and M. H. Kutner, Applied Linear Statistical Models: Regression, Analysis of Variance, and Experimental Design (3rd ed.). New York: McGraw-Hill, Inc. 1990. 
  39. Maroco, J., D. Silva, A. Rodrigues, M. Guerreiro, I. Santana, and A. de Mendonca, "Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests", BMC Research Notes, Vol.4, No.1, 2011, pp. 1-14.  https://doi.org/10.1186/1756-0500-4-1
  40. Murphy, K. P., Machine Learning: A Probabilistic Perspective, Cambridge, MA, USA: MIT Press, 2012. 
  41. Pace, S., "YouTube: An opportunity for consumer narrative analysis?", Qualitative Market Research, Vol.11, No.2, 2008, pp. 213-226.  https://doi.org/10.1108/13522750810864459
  42. Pati, J., B. Kumar, D. Manjhi, and K. K. Shukla, "A Comparison Among ARIMA, BPNN, and MOGA-NN for Software Clone Evolution Prediction", IEEE Access, Vol.5, 2017, pp. 11841-11851.  https://doi.org/10.1109/ACCESS.2017.2707539
  43. Pedersen, J., "How is culture rendered in subtitles", In MuTra 2005-Challenges of Multidimensional Translation: Conference Proceedings, 2005, pp. 1-18. 
  44. Pagani, M., "Digital business strategy and value creation: Framing the dynamic cycle of control points", MIS Quarterly, Vol.37, No.2, 2013, pp. 617-632.  https://doi.org/10.25300/MISQ/2013/37.2.13
  45. Potvin Kent, M., E. Pauze, E. A. Roy, N. de Billy, and C. Czoli, "Children and adolescents' exposure to food and beverage marketing in social media apps", Pediatric Obesity, Vol.14, No.6, 2019, 1e12508. 
  46. Roll, M., "Asian brand strategy", In Asian Brand Strategy, Palgrave Macmillan, London, 2006, pp. 96-128. 
  47. Shaheer, N. A. and S. Li, "The CAGE around cyberspace? How digital innovations internationalize in a virtual world", Journal of Business Venturing, Vol.35, No.1, 2020, 105892. 
  48. Slemmons, K., Anyanwu, K., Hames, J., Grabski, D., Mlsna, J., E. Simkins, and P. Cook, "The impact of video length on learning in a middle-level flipped science setting: Implications for diversity inclusion", Journal of Science Education and Technology, Vol.27, No.5, 2018, pp. 469-479.  https://doi.org/10.1007/s10956-018-9736-2
  49. Ting-Toomey, S. and A. Kurogi, "Facework competence in intercultural conflict: An updated face negotiation theory", International Journal of Intercultural Relations, Vol.22, No.2, 1998, pp. 187-225.  https://doi.org/10.1016/S0147-1767(98)00004-2
  50. Tsai W. S. and L. R. Men, "Consumer engagement with brands on social network sites: A cross-cultural comparison of China and the USA", Journal of Marketing Communications, Vol.23, No.1, 2017, pp. 2-21.  https://doi.org/10.1080/13527266.2014.942678
  51. Van der Voort, T. H. and M. W. Vooijs, "Validity of children's direct estimates of time spent television viewing", Journal of Broadcasting & Electronic Media, Vol.34 No.1, 1990, pp. 93-99.  https://doi.org/10.1080/08838159009386729
  52. Venkateswaran, J. and Y. J. Son, "Effect of information update frequency on the stability of production-inventory control systems", International Journal of Production Economics, Vol.106, No.1, 2007, pp.171-190.  https://doi.org/10.1016/j.ijpe.2006.06.001
  53. Zhou, Y., S. Lu, and M. Ding, "Contour-as-Face framework: A method to preserve privacy and perception", Journal of Marketing Research, Vol.57, No.4, 2020, pp. 617-639. https://doi.org/10.1177/0022243720920256