• Title/Summary/Keyword: Docking simulation

Search Result 91, Processing Time 0.025 seconds

A Study on Selection of Cross-Docking Center based on Existing Logistics Network (기존 물류 네트워크 기반에서 크로스 - 도킹 거점선정에 관한 연구)

  • Lee, In-Chul;Lee, Myeong-Ho;Kim, Nae-Heon
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.26-33
    • /
    • 2006
  • Many Firms consider the application of a cross-docking system to reduce inventory and lead-time. However, most studies mainly concentrate on the design of a cross-docking system. This study presents the method that selects the cross-docking center under the existing logistics network. Describing the operation environment to apply the cross-docking system, the selection criteria of the cross-docking center, and the main constraints of transportation planning under the environment of multi-level logistics network, we define the selection problem of the cross-docking center applied to a logistics field. We also define the simulation model that can analyze variously the cross-docking volume and develop the selection methodology of the cross-docking center. The simulation model presents the algorithm and influence factors of the cross-docking system, the decision criteria of the system, policy parameter, and input data. In addition, this study analyzes the effect of increasing the number of simultaneous receiving and shipping docks, and the efficiency of the overnight transportation and cross-docking by evaluating each scenario after simulating the scenarios with the practical data of the logistics field.

In silico target identification of biologically active compounds using an inverse docking simulation

  • Choi, Youngjin
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.12.1-12.4
    • /
    • 2013
  • Identification of target protein is an important procedure in the course of drug discovery. Because of complexity, action mechanisms of herbal medicine are rather obscure, unlike small-molecular drugs. Inverse docking simulation is a reverse use of molecular docking involving multiple target searches for known chemical structure. This methodology can be applied in the field of target fishing and toxicity prediction for herbal compounds as well as known drug molecules. The aim of this review is to introduce a series of in silico works for predicting potential drug targets and side-effects based on inverse docking simulations.

Prediction of Chiral Discrimination by β-Cyclodextrins Using Grid-based Monte Carlo Docking Simulations

  • Choi, Young-Jin;Kim, Dong-Wook;Park, Hyung-Woo;Hwang, Sun-Tae;Jeong, Karp-Joo;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.769-775
    • /
    • 2005
  • An efficiency of Monte Carlo (MC) docking simulations was examined for the prediction of chiral discrimination by cyclodextrins. Docking simulations were performed with various computational parameters for the chiral discrimination of a series of 17 enantiomers by $\beta$-cyclodextrin ($\beta$-CD) or by 6-amino-6-deoxy-$\beta$-cyclodextrin (am-$\beta$-CD). A total of 30 sets of enantiomeric complexes were tested to find the optimal simulation parameters for accurate predictions. Rigid-body MC docking simulations gave more accurate predictions than flexible docking simulations. The accuracy was also affected by both the simulation temperature and the kind of force field. The prediction rate of chiral preference was improved by as much as 76.7% when rigid-body MC docking simulations were performed at low-temperatures (100 K) with a sugar22 parameter set in the CHARMM force field. Our approach for MC docking simulations suggested that the conformational rigidity of both the host and guest molecule, due to either the low-temperature or rigid-body docking condition, contributed greatly to the prediction of chiral discrimination.

A Study on Selection of Cross-Docking Center by Changing the Logistics Location (물류거점 변경에 따른 크로스-도킹 거점 입지 선정에 관한 연구)

  • Lee In-Cheol;Lee Myeong-Ho;Song Jeong-Eun;Kim Nae-Heon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1754-1757
    • /
    • 2006
  • Recently many firms operate a cross-docking center in addition to run a distribution center to reduce logistics costs and maintain or enhance logistics service. However, it is true that many firms just operate their cross-docking centers as they are without any change, in spite of that the location of the cross-docking center should be changed and operated when the location of distribution center is changed and moved. This study presents the method that re-selects the location of the cross-docking center when the existing distribution center is changed. Describing the operation environment to apply the cross-docking system and the selection criteria of the cross-docking center under the environment of changeable logistics network, we define the simulation model which can analyze and select the location of the cross-docking center applied to a logistics field. The simulation model presents experiential algorithm selecting the location with the data of the demand point such as volume, transportation costs, and delivery distance.

  • PDF

Development of the Enhanced Cross-Docking Model through Compromise between Line-haul and Shuttle Service (간선과 지선간 절충을 통한 개선된 크로스도킹 모델 개발)

  • Kim, Ki-Hong;Shin, Seung-Jun;Choi, See-Yeong;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.199-207
    • /
    • 2008
  • Many logistics enterprises have made efforts to achieve low costly and high efficient logistics network. The cross-docking system can be a good solution for them. However, it requires tight schedule and all-night operation inevitably for realization of ideal cross-docking. These causes the difficulty of the attainment of daily delivery target and the leave of delivery service persons. In this paper, we develop the line-haul and shuttle service compromised cross-docking model in order to solve the problems practically. We apply the storage process with the cross-docking system and the direct cross-docking between line-haul and shuttle services. The simulation model validates the shorter delivery time by the developed model than the present model.

Design of Distribution Facility for Cross Docking Systems (크로스도킹 시스템을 위한 물류센터의 설계에 관한 연구)

  • Yu, Woo-Yeon;Park, Yun-Sun;Shin, Jung-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.187-193
    • /
    • 2008
  • Cross docking is a warehouse management concept in which items delivered to a distribution facility by inbound trucks are immediately sorted out and reorganized based on customer demands and are routed and loaded into outbound trucks for delivery to customers without actually being held in inventory in the distribution facility. In this research, the design of distribution facility for cross docking systems was studied. The objective of this research is to find the minimum number of receiving docks and shipping docks, respectively, in order to meet the daily demand of the distribution center. Two solution approaches are employed in modeling and solving the problem The first approach is mathematical modeling and the second approach is a simulation. The logic developed in the simulation model is expected to apply to the real world situation.

A Development of Docking Phase Analysis Tool for Nanosatellite

  • Jeong, Miri;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.187-197
    • /
    • 2020
  • In order to avoid the high cost and high risk of demonstration mission of rendezvous-docking technology, missions using nanosatellites have recently been increasing. However, there are few successful mission cases due to many limitations of nanosatellites like small size, power limitation, and limited performances of sensor, thruster, and controller. To improve the probability of rendezvous-docking mission success using nanosatellite, a rendezvous-docking phase analysis tool for nanosatellites is developed. The tool serves to analyze the relative position and attitude control of the chaser satellite at the docking phase. In this tool, the Model Predictive Controller (MPC) is implemented as a controller, and Extended Kalman Filter (EKF) is adopted as a filter for noise filtering. To verify the performance and effectiveness of the developed tool for nanosatellites, simulation study was conducted. Consequently, we confirmed that this tool can be used for the analysis of relative position and attitude control for nanosatellites in the rendezvous-docking phase.

Terminal Guidance Control for Underwater-Docking of an AUV Using Visual Guidance Device (광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 종단 유도 제어)

  • Choi, Dong-Hyun;Jun, Bong-Huan;Park, Jin-Yeong;Lee, Pan-Mook;Kim, Sang-Hyun;Oh, Jun-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.335-338
    • /
    • 2006
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI Ocean Engineering Water Tank. As AUV ISIMI approachs the docking device, it is presented that attitude is unstable, because the lights Which is on Image Frame are disappeared. So we fix the rudder and stem, if the lights on Image Frame are reaching the specific area in the Image Frame. In this paper, we intend to solve the problems that were found in the testing, which, first, will be identified via simulation.

  • PDF

Study on the Docking Algorithm for Underwater-Docking of an AUV Using Visual Guidance Device (광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 알고리즘에 관한 연구)

  • Choi, Dong-Hyun;Jun, Bong-Huan;Lee, Pan-Mook;Kim, Sang-Hyun;Lim, Geun-Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.33-39
    • /
    • 2007
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking device and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI ocean engineering water tank. As AUV ISIMI approachs the docking device, there is some cases of showing an unstable attitude, because the lights which is on Image Frame are disappeared. So we propose the docking algorithm that is fixing the rudder and stem, if the lights on image frame are reaching the specific area in the Image Frame. Also we propose the new docking device, which has a variety of position and light number. In this paper, we intend to solve the some cases of showing an unstable attitude that were found in the testing, which, first, will be identified the validity via simulation.