Acknowledgement
This study was supported by the Linkage Project from the Australian Research Council (ARC) grant (LP160101594). As a medical research institute, NICM Health Research Institute receives research grants and donations from foundations, universities, government agencies, individuals and industry. Sponsors and donors also provide untied funding for work to advance the vision and mission of the Institute.
References
- Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J. and Tang, X. (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 585-597. https://doi.org/10.1016/j.bbadis.2016.11.005
- Anand, P., Kunnumakkara, A. B., Newman, R. A. and Aggarwal, B. B. (2007) Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807-818. https://doi.org/10.1021/mp700113r
- Bischoff-Kont, I. and Furst, R. (2021) Benefits of ginger and its constituent 6-Shogaol in inhibiting inflammatory processes. Pharmaceuticals 14, 571. https://doi.org/10.3390/ph14060571
- Boyanapalli, S. S., Paredes-Gonzalez, X., Fuentes, F., Zhang, C., Guo, Y., Pung, D., Saw, C. L. L. and Kong, A.-N. T. (2014) Nrf2 knockout attenuates the anti-inflammatory effects of phenethyl isothiocyanate and curcumin. Chem. Res. Toxicol. 27, 2036-2043. https://doi.org/10.1021/tx500234h
- Chen, F., Tang, Y., Sun, Y., Veeraraghavan, V. P., Mohan, S. K. and Cui, C. (2019) 6-shogaol, a active constiuents of ginger prevents UVB radiation mediated inflammation and oxidative stress through modulating NrF2 signaling in human epidermal keratinocytes (HaCaT cells). J. Photochem. Photobiol., B 197, 111518. https://doi.org/10.1016/j.jphotobiol.2019.111518
- Chousterman, B. G., Swirski, F. K. and Weber, G. F. (2017) Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 39, 517-528. https://doi.org/10.1007/s00281-017-0639-8
- Clark, I. A. (2007) The advent of the cytokine storm. Immunol. Cell Biol. 85, 271-273. https://doi.org/10.1038/sj.icb.7100062
- Coperchini, F., Chiovato, L., Ricci, G., Croce, L., Magri, F. and Rotondi, M. (2021) The cytokine storm in COVID-19: further advances in our understanding the role of specific chemokines involved. Cytokine Growth Factor Rev. 58, 82-91. https://doi.org/10.1016/j.cytogfr.2020.12.005
- Cron, R. Q. (2021) COVID-19 cytokine storm: targeting the appropriate cytokine. Lancet Rheumatol. 3, e236-e237. https://doi.org/10.1016/S2665-9913(21)00011-4
- D'Elia, R. V., Harrison, K., Oyston, P. C., Lukaszewski, R. A. and Clark, G. C. (2013) Targeting the "cytokine storm" for therapeutic benefit. Clin. Vaccine immunol. 20, 319-327. https://doi.org/10.1128/CVI.00636-12
- Dai, J., Gu, L., Su, Y., Wang, Q., Zhao, Y., Chen, X., Deng, H., Li, W., Wang, G. and Li, K. (2018) Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int. Immunopharmacol. 54, 177-187. https://doi.org/10.1016/j.intimp.2017.11.009
- Deng, M., Scott, M. J., Loughran, P., Gibson, G., Sodhi, C., Watkins, S., Hackam, D. and Billiar, T. R. (2013) Lipopolysaccharide clearance, bacterial clearance, and systemic inflammatory responses are regulated by cell type-specific functions of TLR4 during sepsis. J. Immunol. 190, 5152-5160. https://doi.org/10.4049/jimmunol.1300496
- Dorrington, M. G. and Fraser, I. D. (2019) NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front. Immunol. 10, 705. https://doi.org/10.3389/fimmu.2019.00705
- Gasparello, J., Finotti, A. and Gambari, R. (2021) Tackling the COVID-19 "cytokine storm" with microRNA mimics directly targeting the 3'UTR of pro-inflammatory mRNAs. Med. Hypotheses 146, 110415. https://doi.org/10.1016/j.mehy.2020.110415
- Gonzalez-Aparicio, M. and Alfaro, C. (2019) Influence of interleukin-8 and neutrophil extracellular trap (NET) formation in the tumor microenvironment: is there a pathogenic role? J. Immunol. Res. 2019, 6252138. https://doi.org/10.1155/2019/6252138
- Guimaraes, M. R., Leite, F. R. M., Spolidorio, L. C., Kirkwood, K. L. and Rossa, C., Jr. (2013) Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Arch. Oral Biol. 58, 1309-1317. https://doi.org/10.1016/j.archoralbio.2013.07.005
- Hernandez, M. L., Harris, B., Lay, J. C., Bromberg, P. A., Diaz-Sanchez, D., Devlin, R. B., Kleeberger, S. R., Alexis, N. E. and Peden, D. B. (2010) Comparative airway inflammatory response of normal volunteers to ozone and lipopolysaccharide challenge. Inhal. Toxicol. 22, 648-656. https://doi.org/10.3109/08958371003610966
- Islam, D., Lombardini, E., Ruamsap, N., Imerbsin, R., Khantapura, P., Teo, I., Neesanant, P., Gonwong, S., Yongvanitchit, K., Swierczewski, B. E., Mason, C. J. and Shaunak, S. (2016) Controlling the cytokine storm in severe bacterial diarrhoea with an oral Toll-like receptor 4 antagonist. Immunology 147, 178-189. https://doi.org/10.1111/imm.12549
- Jablonska, E., Gorniak, P., Prusisz, W., Kiliszek, P., Szydlowski, M., Sewastianik, T., Bialopiotrowicz, M., Polak, A., Prochorec-Sobieszek, M., Szumera-Cieckiewicz, A., Warzocha, K. and Juszczynski, P. (2015) MiR-155 amplifies AKT and NFkB signaling by targeting multiple regulators of BCR signal in DLBCL. Blood 126, 2455. https://doi.org/10.1182/blood.v126.23.2455.2455
- Jafarzadeh, A. and Nemati, M. (2018) Therapeutic potentials of ginger for treatment of Multiple sclerosis: a review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J. Neuroimmunol. 324, 54-75. https://doi.org/10.1016/j.jneuroim.2018.09.003
- Jahrling, P. B., Hensley, L. E., Martinez, M. J., LeDuc, J. W., Rubins, K. H., Relman, D. A. and Huggins, J. W. (2004) Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox. Proc. Natl. Acad. Sci. U. S. A. 101, 15196-15200. https://doi.org/10.1073/pnas.0405954101
- KhalKhal, E., Razzaghi, Z., Zali, H., Bahadorimonfared, A., Iranshahi, M. and Rostami-Nejad, M. (2019) Comparison of cytokine and gene activities in tissue and blood samples of patients with celiac disease. Gastroenterol. Hepatol. Bed Bench 12, S108-S116.
- Lehar, J., Krueger, A. S., Avery, W., Heilbut, A. M., Johansen, L. M., Price, E. R., Rickles, R. J., Short, G. F., 3rd, Staunton, J. E., Jin, X., Lee, M. S., Zimmermann, G. R. and Borisy, A. A. (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659-666. https://doi.org/10.1038/nbt.1549
- Li, F., Nitteranon, V., Tang, X., Liang, J., Zhang, G., Parkin, K. L. and Hu, Q. (2012) In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. Food Chem. 135, 332-337. https://doi.org/10.1016/j.foodchem.2012.04.145
- Liu, Z. and Ying, Y. (2020) The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front. Cell Dev. Biol. 8, 479. https://doi.org/10.3389/fcell.2020.00479
- Ma, F. Y., Liu, F., Ding, L., You, M., Yue, H. M., Zhou, Y. J. and Hou, Y. Y. (2017) Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm. Biol. 55, 1263-1273. https://doi.org/10.1080/13880209.2017.1297838
- Mahesh, G. and Biswas, R. (2019) MicroRNA-155: a master regulator of inflammation. J. Interferon Cytokine Res. 39, 321-330. https://doi.org/10.1089/jir.2018.0155
- Meng, Q. F., Tian, R., Long, H., Wu, X., Lai, J., Zharkova, O., Wang, J. W., Chen, X. and Rao, L. (2021) Capturing cytokines with advanced materials: a potential strategy to tackle COVID-19 cytokine storm. Adv. Mater. 33, e2100012. https://doi.org/10.1002/adma.202100012
- Miao, Y., Zhao, S., Gao, Y., Wang, R., Wu, Q., Wu, H. and Luo, T. (2016) Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: the possible role of Sirt1 signaling. Brain Res. Bull. 121, 9-15. https://doi.org/10.1016/j.brainresbull.2015.11.019
- Miossec, P. (2020) Synergy between cytokines and risk factors in the cytokine storm of COVID-19: does ongoing use of cytokine inhibitors have a protective effect? Arthritis Rheumatol. 72, 1963-1966. https://doi.org/10.1002/art.41458
- Murthy, S. and Lee, T. C. (2021) IL-6 blockade for COVID-19: a global scientific call to arms. Lancet Respir. Med. 9, 438-440. https://doi.org/10.1016/S2213-2600(21)00127-2
- Osburn, W. O., Karim, B., Dolan, P. M., Liu, G., Yamamoto, M., Huso, D. L. and Kensler, T. W. (2007) Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int. J. Cancer 121, 1883-1891. https://doi.org/10.1002/ijc.22943
- Pan, M. H., Hsieh, M. C., Hsu, P. C., Ho, S. Y., Lai, C. S., Wu, H., Sang, S. and Ho, C. T. (2008) 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol. Nutr. Food Res. 52, 1467-1477. https://doi.org/10.1002/mnfr.200700515
- Qin, S., Du, R., Yin, S., Liu, X., Xu, G. and Cao, W. (2015) Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPSinduced inflammation. Inflamm. Res. 64, 537-548. https://doi.org/10.1007/s00011-015-0834-9
- Santos, I., Colaco, H. G., Neves-Costa, A., Seixas, E., Velho, T. R., Pedroso, D., Barros, A., Martins, R., Carvalho, N., Payen, D., Weis, S., Yi, H. S., Shong, M. and Moita, L. F. (2020) CXCL5-mediated recruitment of neutrophils into the peritoneal cavity of Gdf15-deficient mice protects against abdominal sepsis. Proc. Natl. Acad. Sci. U. S. A. 117, 12281-12287. https://doi.org/10.1073/pnas.1918508117
- Saw, C. L. L., Huang, Y. and Kong, A.-N. (2010) Synergistic anti-inflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: docosahexaenoic acid or eicosapentaenoic acid. Biochem. Pharmacol. 79, 421-430. https://doi.org/10.1016/j.bcp.2009.08.030
- Sordillo, P. P. and Helson, L. (2015) Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. In Vivo 29, 1-4.
- Soy, M., Keser, G., Atagunduz, P., Tabak, F., Atagunduz, I. and Kayhan, S. (2020) Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol. 39, 2085-2094. https://doi.org/10.1007/s10067-020-05190-5
- Thimmulappa, R. K., Lee, H., Rangasamy, T., Reddy, S. P., Yamamoto, M., Kensler, T. W. and Biswal, S. (2016) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984-995. https://doi.org/10.1172/JCI2579
- Tisoncik, J. R., Korth, M. J., Simmons, C. P., Farrar, J., Martin, T. R. and Katze, M. G. (2012) Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 76, 16-32. https://doi.org/10.1128/MMBR.05015-11
- Wang, W., Liu, X., Wu, S., Chen, S., Li, Y., Nong, L., Lie, P., Huang, L., Cheng, L., Lin, Y. and He, J. (2020) Definition and risks of cytokine release syndrome in 11 critically ill COVID-19 patients with pneumonia: analysis of disease characteristics. J. Infect. Dis. 222, 1444-1451. https://doi.org/10.1093/infdis/jiaa387
- World Health Organization (2020) The Top 10 Causes of Death. Available from: https://www.who.int/news-room/fact-sheets/detail/thetop-10-causes-of-death/.
- Xu, J., Jia, Z., Chen, A. and Wang, C. (2020) Curcumin ameliorates Staphylococcus aureus-induced mastitis injury through attenuating TLR2-mediated NF-κB activation. Microb. Pathog. 142, 104054. https://doi.org/10.1016/j.micpath.2020.104054
- Yokota, S. (2003) Influenza-associated encephalopathy--pathophysiology and disease mechanisms. Nihon Rinsho 61, 1953-1958.
- Yuen, K. and Wong, S. (2005) Human infection by avian influenza A H5N1. Hong Kong Med. J. 11, 189-199.
- Zhou, L., Qi, L., Jiang, L., Zhou, P., Ma, J., Xu, X. and Li, P. (2014) Antitumor activity of gemcitabine can be potentiated in pancreatic cancer through modulation of TLR4/NF-κB signaling by 6-shogaol. AAPS J. 16, 246-257. https://doi.org/10.1208/s12248-013-9558-3
- Zhou, X., Afzal, S., Wohlmuth, H., Munch, G., Leach, D., Low, M. and Li, C. G. (2022a) Synergistic anti-inflammatory activity of ginger and turmeric extracts in inhibiting lipopolysaccharide and interferon-γ-induced proinflammatory Mediators. Molecules 27, 3877. https://doi.org/10.3390/molecules27123877
- Zhou, X., Munch, G., Wohlmuth, H., Afzal, S., Kao, M., Al-Khazaleh, A., Low, M., Leach, D. and Li, C. G. (2022b) Synergistic inhibition of pro-inflammatory pathways by ginger and turmeric extracts in RAW 264.7 cells. Front. Pharmacol. 13, 818166. https://doi.org/10.3389/fphar.2022.818166
- Zhou, X., Razmovski-Naumovski, V., Kam, A., Chang, D., Li, C., Bensoussan, A. and Chan, K. (2017) Synergistic effects of Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) combination in angiogenesis behavior in EAhy 926 cells. Medicines 4, 85. https://doi.org/10.3390/medicines4040085
- Zhou, X., Razmovski-Naumovski, V., Kam, A., Chang, D., Li, C. G., Chan, K. and Bensoussan, A. (2019) Synergistic study of a Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) combination on cell survival in EA.hy926 cells. BMC Complement. Altern. Med. 19, 50. https://doi.org/10.1186/s12906-019-2458-z
- Zhou, X., Seto, S. W., Chang, D., Kiat, H., Razmovski-Naumovski, V., Chan, K. and Bensoussan, A. (2016) Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Front. Pharmacol. 7, 201. https://doi.org/10.3389/fphar.2016.00201
- Zhu, H.-t., Bian, C., Yuan, J.-c., Chu, W.-h., Xiang, X., Chen, F., Wang, C.-s., Feng, H. and Lin, J.-k. (2014) Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J. Neuroinflammation 11, 59. https://doi.org/10.1186/1742-2094-11-59