DOI QR코드

DOI QR Code

6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation

  • Xian, Zhou (NICM Health Research Institute, Western Sydney University) ;
  • Ahmad, Al-Khazaleh (NICM Health Research Institute, Western Sydney University) ;
  • Sualiha, Afzal (School of Medicine, Western Sydney University) ;
  • Ming-Hui (Tim), Kao (School of Medicine, Western Sydney University) ;
  • Gerald, Munch (School of Medicine, Western Sydney University) ;
  • Hans, Wohlmuth (NICM Health Research Institute, Western Sydney University) ;
  • David, Leach (Integria Healthcare) ;
  • Mitchell, Low (NICM Health Research Institute, Western Sydney University) ;
  • Chun Guang, Li (NICM Health Research Institute, Western Sydney University)
  • Received : 2022.03.15
  • Accepted : 2022.08.18
  • Published : 2023.01.01

Abstract

Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokine-suppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-γ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaolcurcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.

Keywords

Acknowledgement

This study was supported by the Linkage Project from the Australian Research Council (ARC) grant (LP160101594). As a medical research institute, NICM Health Research Institute receives research grants and donations from foundations, universities, government agencies, individuals and industry. Sponsors and donors also provide untied funding for work to advance the vision and mission of the Institute.

References

  1. Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J. and Tang, X. (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 585-597. https://doi.org/10.1016/j.bbadis.2016.11.005
  2. Anand, P., Kunnumakkara, A. B., Newman, R. A. and Aggarwal, B. B. (2007) Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807-818. https://doi.org/10.1021/mp700113r
  3. Bischoff-Kont, I. and Furst, R. (2021) Benefits of ginger and its constituent 6-Shogaol in inhibiting inflammatory processes. Pharmaceuticals 14, 571. https://doi.org/10.3390/ph14060571
  4. Boyanapalli, S. S., Paredes-Gonzalez, X., Fuentes, F., Zhang, C., Guo, Y., Pung, D., Saw, C. L. L. and Kong, A.-N. T. (2014) Nrf2 knockout attenuates the anti-inflammatory effects of phenethyl isothiocyanate and curcumin. Chem. Res. Toxicol. 27, 2036-2043. https://doi.org/10.1021/tx500234h
  5. Chen, F., Tang, Y., Sun, Y., Veeraraghavan, V. P., Mohan, S. K. and Cui, C. (2019) 6-shogaol, a active constiuents of ginger prevents UVB radiation mediated inflammation and oxidative stress through modulating NrF2 signaling in human epidermal keratinocytes (HaCaT cells). J. Photochem. Photobiol., B 197, 111518. https://doi.org/10.1016/j.jphotobiol.2019.111518
  6. Chousterman, B. G., Swirski, F. K. and Weber, G. F. (2017) Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 39, 517-528. https://doi.org/10.1007/s00281-017-0639-8
  7. Clark, I. A. (2007) The advent of the cytokine storm. Immunol. Cell Biol. 85, 271-273. https://doi.org/10.1038/sj.icb.7100062
  8. Coperchini, F., Chiovato, L., Ricci, G., Croce, L., Magri, F. and Rotondi, M. (2021) The cytokine storm in COVID-19: further advances in our understanding the role of specific chemokines involved. Cytokine Growth Factor Rev. 58, 82-91. https://doi.org/10.1016/j.cytogfr.2020.12.005
  9. Cron, R. Q. (2021) COVID-19 cytokine storm: targeting the appropriate cytokine. Lancet Rheumatol. 3, e236-e237. https://doi.org/10.1016/S2665-9913(21)00011-4
  10. D'Elia, R. V., Harrison, K., Oyston, P. C., Lukaszewski, R. A. and Clark, G. C. (2013) Targeting the "cytokine storm" for therapeutic benefit. Clin. Vaccine immunol. 20, 319-327. https://doi.org/10.1128/CVI.00636-12
  11. Dai, J., Gu, L., Su, Y., Wang, Q., Zhao, Y., Chen, X., Deng, H., Li, W., Wang, G. and Li, K. (2018) Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int. Immunopharmacol. 54, 177-187. https://doi.org/10.1016/j.intimp.2017.11.009
  12. Deng, M., Scott, M. J., Loughran, P., Gibson, G., Sodhi, C., Watkins, S., Hackam, D. and Billiar, T. R. (2013) Lipopolysaccharide clearance, bacterial clearance, and systemic inflammatory responses are regulated by cell type-specific functions of TLR4 during sepsis. J. Immunol. 190, 5152-5160. https://doi.org/10.4049/jimmunol.1300496
  13. Dorrington, M. G. and Fraser, I. D. (2019) NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front. Immunol. 10, 705. https://doi.org/10.3389/fimmu.2019.00705
  14. Gasparello, J., Finotti, A. and Gambari, R. (2021) Tackling the COVID-19 "cytokine storm" with microRNA mimics directly targeting the 3'UTR of pro-inflammatory mRNAs. Med. Hypotheses 146, 110415. https://doi.org/10.1016/j.mehy.2020.110415
  15. Gonzalez-Aparicio, M. and Alfaro, C. (2019) Influence of interleukin-8 and neutrophil extracellular trap (NET) formation in the tumor microenvironment: is there a pathogenic role? J. Immunol. Res. 2019, 6252138. https://doi.org/10.1155/2019/6252138
  16. Guimaraes, M. R., Leite, F. R. M., Spolidorio, L. C., Kirkwood, K. L. and Rossa, C., Jr. (2013) Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Arch. Oral Biol. 58, 1309-1317. https://doi.org/10.1016/j.archoralbio.2013.07.005
  17. Hernandez, M. L., Harris, B., Lay, J. C., Bromberg, P. A., Diaz-Sanchez, D., Devlin, R. B., Kleeberger, S. R., Alexis, N. E. and Peden, D. B. (2010) Comparative airway inflammatory response of normal volunteers to ozone and lipopolysaccharide challenge. Inhal. Toxicol. 22, 648-656. https://doi.org/10.3109/08958371003610966
  18. Islam, D., Lombardini, E., Ruamsap, N., Imerbsin, R., Khantapura, P., Teo, I., Neesanant, P., Gonwong, S., Yongvanitchit, K., Swierczewski, B. E., Mason, C. J. and Shaunak, S. (2016) Controlling the cytokine storm in severe bacterial diarrhoea with an oral Toll-like receptor 4 antagonist. Immunology 147, 178-189. https://doi.org/10.1111/imm.12549
  19. Jablonska, E., Gorniak, P., Prusisz, W., Kiliszek, P., Szydlowski, M., Sewastianik, T., Bialopiotrowicz, M., Polak, A., Prochorec-Sobieszek, M., Szumera-Cieckiewicz, A., Warzocha, K. and Juszczynski, P. (2015) MiR-155 amplifies AKT and NFkB signaling by targeting multiple regulators of BCR signal in DLBCL. Blood 126, 2455. https://doi.org/10.1182/blood.v126.23.2455.2455
  20. Jafarzadeh, A. and Nemati, M. (2018) Therapeutic potentials of ginger for treatment of Multiple sclerosis: a review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J. Neuroimmunol. 324, 54-75. https://doi.org/10.1016/j.jneuroim.2018.09.003
  21. Jahrling, P. B., Hensley, L. E., Martinez, M. J., LeDuc, J. W., Rubins, K. H., Relman, D. A. and Huggins, J. W. (2004) Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox. Proc. Natl. Acad. Sci. U. S. A. 101, 15196-15200. https://doi.org/10.1073/pnas.0405954101
  22. KhalKhal, E., Razzaghi, Z., Zali, H., Bahadorimonfared, A., Iranshahi, M. and Rostami-Nejad, M. (2019) Comparison of cytokine and gene activities in tissue and blood samples of patients with celiac disease. Gastroenterol. Hepatol. Bed Bench 12, S108-S116.
  23. Lehar, J., Krueger, A. S., Avery, W., Heilbut, A. M., Johansen, L. M., Price, E. R., Rickles, R. J., Short, G. F., 3rd, Staunton, J. E., Jin, X., Lee, M. S., Zimmermann, G. R. and Borisy, A. A. (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659-666. https://doi.org/10.1038/nbt.1549
  24. Li, F., Nitteranon, V., Tang, X., Liang, J., Zhang, G., Parkin, K. L. and Hu, Q. (2012) In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. Food Chem. 135, 332-337. https://doi.org/10.1016/j.foodchem.2012.04.145
  25. Liu, Z. and Ying, Y. (2020) The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front. Cell Dev. Biol. 8, 479. https://doi.org/10.3389/fcell.2020.00479
  26. Ma, F. Y., Liu, F., Ding, L., You, M., Yue, H. M., Zhou, Y. J. and Hou, Y. Y. (2017) Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm. Biol. 55, 1263-1273. https://doi.org/10.1080/13880209.2017.1297838
  27. Mahesh, G. and Biswas, R. (2019) MicroRNA-155: a master regulator of inflammation. J. Interferon Cytokine Res. 39, 321-330. https://doi.org/10.1089/jir.2018.0155
  28. Meng, Q. F., Tian, R., Long, H., Wu, X., Lai, J., Zharkova, O., Wang, J. W., Chen, X. and Rao, L. (2021) Capturing cytokines with advanced materials: a potential strategy to tackle COVID-19 cytokine storm. Adv. Mater. 33, e2100012. https://doi.org/10.1002/adma.202100012
  29. Miao, Y., Zhao, S., Gao, Y., Wang, R., Wu, Q., Wu, H. and Luo, T. (2016) Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: the possible role of Sirt1 signaling. Brain Res. Bull. 121, 9-15. https://doi.org/10.1016/j.brainresbull.2015.11.019
  30. Miossec, P. (2020) Synergy between cytokines and risk factors in the cytokine storm of COVID-19: does ongoing use of cytokine inhibitors have a protective effect? Arthritis Rheumatol. 72, 1963-1966. https://doi.org/10.1002/art.41458
  31. Murthy, S. and Lee, T. C. (2021) IL-6 blockade for COVID-19: a global scientific call to arms. Lancet Respir. Med. 9, 438-440. https://doi.org/10.1016/S2213-2600(21)00127-2
  32. Osburn, W. O., Karim, B., Dolan, P. M., Liu, G., Yamamoto, M., Huso, D. L. and Kensler, T. W. (2007) Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int. J. Cancer 121, 1883-1891. https://doi.org/10.1002/ijc.22943
  33. Pan, M. H., Hsieh, M. C., Hsu, P. C., Ho, S. Y., Lai, C. S., Wu, H., Sang, S. and Ho, C. T. (2008) 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol. Nutr. Food Res. 52, 1467-1477. https://doi.org/10.1002/mnfr.200700515
  34. Qin, S., Du, R., Yin, S., Liu, X., Xu, G. and Cao, W. (2015) Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPSinduced inflammation. Inflamm. Res. 64, 537-548. https://doi.org/10.1007/s00011-015-0834-9
  35. Santos, I., Colaco, H. G., Neves-Costa, A., Seixas, E., Velho, T. R., Pedroso, D., Barros, A., Martins, R., Carvalho, N., Payen, D., Weis, S., Yi, H. S., Shong, M. and Moita, L. F. (2020) CXCL5-mediated recruitment of neutrophils into the peritoneal cavity of Gdf15-deficient mice protects against abdominal sepsis. Proc. Natl. Acad. Sci. U. S. A. 117, 12281-12287. https://doi.org/10.1073/pnas.1918508117
  36. Saw, C. L. L., Huang, Y. and Kong, A.-N. (2010) Synergistic anti-inflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: docosahexaenoic acid or eicosapentaenoic acid. Biochem. Pharmacol. 79, 421-430. https://doi.org/10.1016/j.bcp.2009.08.030
  37. Sordillo, P. P. and Helson, L. (2015) Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. In Vivo 29, 1-4.
  38. Soy, M., Keser, G., Atagunduz, P., Tabak, F., Atagunduz, I. and Kayhan, S. (2020) Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol. 39, 2085-2094. https://doi.org/10.1007/s10067-020-05190-5
  39. Thimmulappa, R. K., Lee, H., Rangasamy, T., Reddy, S. P., Yamamoto, M., Kensler, T. W. and Biswal, S. (2016) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984-995. https://doi.org/10.1172/JCI2579
  40. Tisoncik, J. R., Korth, M. J., Simmons, C. P., Farrar, J., Martin, T. R. and Katze, M. G. (2012) Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 76, 16-32. https://doi.org/10.1128/MMBR.05015-11
  41. Wang, W., Liu, X., Wu, S., Chen, S., Li, Y., Nong, L., Lie, P., Huang, L., Cheng, L., Lin, Y. and He, J. (2020) Definition and risks of cytokine release syndrome in 11 critically ill COVID-19 patients with pneumonia: analysis of disease characteristics. J. Infect. Dis. 222, 1444-1451. https://doi.org/10.1093/infdis/jiaa387
  42. World Health Organization (2020) The Top 10 Causes of Death. Available from: https://www.who.int/news-room/fact-sheets/detail/thetop-10-causes-of-death/.
  43. Xu, J., Jia, Z., Chen, A. and Wang, C. (2020) Curcumin ameliorates Staphylococcus aureus-induced mastitis injury through attenuating TLR2-mediated NF-κB activation. Microb. Pathog. 142, 104054. https://doi.org/10.1016/j.micpath.2020.104054
  44. Yokota, S. (2003) Influenza-associated encephalopathy--pathophysiology and disease mechanisms. Nihon Rinsho 61, 1953-1958.
  45. Yuen, K. and Wong, S. (2005) Human infection by avian influenza A H5N1. Hong Kong Med. J. 11, 189-199.
  46. Zhou, L., Qi, L., Jiang, L., Zhou, P., Ma, J., Xu, X. and Li, P. (2014) Antitumor activity of gemcitabine can be potentiated in pancreatic cancer through modulation of TLR4/NF-κB signaling by 6-shogaol. AAPS J. 16, 246-257. https://doi.org/10.1208/s12248-013-9558-3
  47. Zhou, X., Afzal, S., Wohlmuth, H., Munch, G., Leach, D., Low, M. and Li, C. G. (2022a) Synergistic anti-inflammatory activity of ginger and turmeric extracts in inhibiting lipopolysaccharide and interferon-γ-induced proinflammatory Mediators. Molecules 27, 3877. https://doi.org/10.3390/molecules27123877
  48. Zhou, X., Munch, G., Wohlmuth, H., Afzal, S., Kao, M., Al-Khazaleh, A., Low, M., Leach, D. and Li, C. G. (2022b) Synergistic inhibition of pro-inflammatory pathways by ginger and turmeric extracts in RAW 264.7 cells. Front. Pharmacol. 13, 818166. https://doi.org/10.3389/fphar.2022.818166
  49. Zhou, X., Razmovski-Naumovski, V., Kam, A., Chang, D., Li, C., Bensoussan, A. and Chan, K. (2017) Synergistic effects of Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) combination in angiogenesis behavior in EAhy 926 cells. Medicines 4, 85. https://doi.org/10.3390/medicines4040085
  50. Zhou, X., Razmovski-Naumovski, V., Kam, A., Chang, D., Li, C. G., Chan, K. and Bensoussan, A. (2019) Synergistic study of a Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) combination on cell survival in EA.hy926 cells. BMC Complement. Altern. Med. 19, 50. https://doi.org/10.1186/s12906-019-2458-z
  51. Zhou, X., Seto, S. W., Chang, D., Kiat, H., Razmovski-Naumovski, V., Chan, K. and Bensoussan, A. (2016) Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Front. Pharmacol. 7, 201. https://doi.org/10.3389/fphar.2016.00201
  52. Zhu, H.-t., Bian, C., Yuan, J.-c., Chu, W.-h., Xiang, X., Chen, F., Wang, C.-s., Feng, H. and Lin, J.-k. (2014) Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J. Neuroinflammation 11, 59. https://doi.org/10.1186/1742-2094-11-59