DOI QR코드

DOI QR Code

The Trend of Organic Based Nanoparticles in the Treatment of Diabetes and Its Perspectives

  • Vijayakumar, Natesan (Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University) ;
  • Sung-Jin, Kim (Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University)
  • Received : 2022.06.09
  • Accepted : 2022.08.27
  • Published : 2023.01.01

Abstract

Diabetes is an untreatable metabolic disorder characterized by alteration in blood sugar homeostasis, with submucosal insulin therapy being the primary treatment option. This route of drug administration is attributed to low patient comfort due to the risk of pain, distress, and local inflammation/infections. Nanoparticles have indeed been suggested as insulin carriers to allow the drug to be administered via less invasive routes other than injection, such as orally or nasally. The organic-based nanoparticles can be derived from various organic materials (for instance, polysaccharides, lipids, and so on) and thus are prevalently used to enhance the physical and chemical consistency of loaded bioactive compounds (drug) and thus their bioavailability. This review presents various forms of organic nanoparticles (for example, chitosan, dextron, gums, nanoemulsion, alginate, and so on) for enhanced hypoglycemic drug delivery relative to traditional therapies.

Keywords

References

  1. Abasalizadeh, F., Moghaddam, S. V., Alizadeh, E., Kashani, E., Fazljou, S. M. B., Torbati, M. and Akbarzadeh, A. (2020) Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Biol. Eng. 14, 8. https://doi.org/10.1186/s13036-020-0227-7
  2. Abdullah, M. F., Nuge, T., Andriyana, A., Ang, B. C. and Muhamad, F. (2019) Core-shell fibers: design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers 11, 2008. https://doi.org/10.3390/polym11122008
  3. Abedini, F., Ebrahimi, M., Roozbehani, A. H., Domb, A. J. and Hosseinkhani, H. (2018) Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym. Adv. Technol. 29, 2564-2573. https://doi.org/10.1002/pat.4375
  4. Abou Assi, R., M Abdulbaqi, I., Seok Ming, T., Siok Yee, C., A Wahab, H., Asif, S. M. and Darwis, Y. (2020) Liquid and solid self-emulsifying drug delivery systems (SEDDs) as carriers for the oral delivery of azithromycin: optimization, in vitro characterization and stability assessment. Pharmaceutics 12, 1052. https://doi.org/10.3390/pharmaceutics12111052
  5. Ahangarpour, A., Oroojan, A. A., Khorsandi, L., Kouchak, M. and Badavi, M. (2018) Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamideinduced diabetic model and myotube cell of male mouse. Oxid. Med. Cell. Longev. 2018, 7496936. https://doi.org/10.1155/2018/7496936
  6. Akhavan, S., Assadpour, E., Katouzian, I. and Jafari, S. M. (2018) Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci. Technol. 74, 132-146. https://doi.org/10.1016/j.tifs.2018.02.001
  7. Allawadhi, P., Singh, V., Govindaraj, K., Khurana, I., Sarode, L. P., Navik, U., Banothu, A. K., Weiskirchen, R., Bharani, K. K. and Khurana, A. (2021) Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr. Polym. 281, 118923.
  8. Amalan, V., Jose Vinoth Raja, A., Karthikeyan, B., Vijayakumar, N. and Kim, S. J. (2022) Synthesis, characterization of p-coumaric acid nanoparticles and their in vitro antioxidant, anti-inflammatory, antimicrobial and antidiabetic activities. Curr. Pharm. Biotechnol. doi: 10.2174/1389201023666220822112923 [Online ahead of print].
  9. Amalan, V., Jose Vinoth Raja, A., Rajeswari, R., Jayaprakash, R. and Vijayakumar, N. (2021) Antithrombotic, antihemolytic activities and protein conjugation properties of silver nanoparticles synthesized from Turbinaria ornata. Asian J. Chem. 33, 1736-1742. https://doi.org/10.14233/ajchem.2021.23237
  10. Amalan, V. and Vijayakumar, N. (2015) Antihyperglycemic effect of p-coumaric acid on streptozotocin induced diabetic rats. Indian J. Appl. Res. 5, 10-13.
  11. Amalan, V., Vijayakumar, N., Indumathi, D. and Ramakrishnan, A. (2016) Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother. 84, 230-236. https://doi.org/10.1016/j.biopha.2016.09.039
  12. Amalan, V., Vijayakumar, N. and Ramakrishnan, A. (2015) p-Coumaric acid regulates blood glucose and antioxidant levels in streptozotocin induced diabetic rats. J. Chem. Pharm. Res. 7, 831-839.
  13. Amjadi, S., Abbasi, M. M., Shokouhi, B., Ghorbani, M. and Hamishehkar, H. (2019) Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers. J. Funct. Foods 59, 119-128. https://doi.org/10.1016/j.jff.2019.05.015
  14. Balata, G. F., Essa, E. A., Shamardl, H. A., Zaidan, S. H. and Abourehab, M. A. (2016) Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des. Devel. Ther. 10, 117-128.
  15. Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., Brown, D., Alkilany, A. M., Farokhzad, O. C. and Mahmoudi, M. (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218-4244. https://doi.org/10.1039/c6cs00636a
  16. Bowman, P., Sulen, A., Barbetti, F., Beltrand, J., Svalastoga, P., Codner, E., Tessmann, E. H., Juliusson, P. B., Skrivarhaug, T., Pearson, E. R., Flanagan, S. E., Babiker, T., Thomas, N. J., Shepherd, M. H., Ellard, S., Klimes, I., Szopa, M., Polak, M., Iafusco, D., Hattersley, A. T. and Njolstad, P. R.; Neonatal Diabetes International Collaborative Group (2018) Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes Endocrinol. 6, 637-646. https://doi.org/10.1016/S2213-8587(18)30106-2
  17. Brown, T. D., Whitehead, K. A. and Mitragotri, S. (2020) Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 5, 127-148. https://doi.org/10.1038/s41578-019-0156-6
  18. Cerpnjak, K., Zvonar, A., Gasperlin, M. and Vrecer, F. (2013) Lipidbased systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm. 63, 427-445. https://doi.org/10.2478/acph-2013-0040
  19. Chatterjee, B., Hamed Almurisi, S., Ahmed Mahdi Dukhan, A., Mandal, U. K. and Sengupta, P. (2016) Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv. 23, 3639-3652. https://doi.org/10.1080/10717544.2016.1214990
  20. Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G., Krishnaswamy, S., Essa, M. M., Lin, F. H. and Qoronfleh, M. W. (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 20. https://doi.org/10.1186/s40824-019-0166-x
  21. Cho, N., Shaw, J., Karuranga, S., Huang, Y., da Rocha Fernandes, J., Ohlrogge, A. and Malanda, B. (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271-281. https://doi.org/10.1016/j.diabres.2018.02.023
  22. Choudhary, P., Assemany, P. P., Naaz, F., Bhattacharya, A., de Siqueira Castro, J., do Couto Couto, E. d. A., Calijuri, M. L., Pant, K. K. and Malik, A. (2020) A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Sci. Total Environ. 726, 137961. https://doi.org/10.1016/j.scitotenv.2020.137961
  23. da Silva Rosa, S. C., Nayak, N., Caymo, A. M. and Gordon, J. W. (2020) Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol. Rep. 8, e14607. https://doi.org/10.14814/phy2.14607
  24. Damarla, K., Rachuri, Y., Suresh, E. and Kumar, A. (2018) Nanoemulsions with all ionic liquid components as recyclable nanoreactors. Langmuir 34, 10081-10091. https://doi.org/10.1021/acs.langmuir.8b01909
  25. Duran-Lobato, M., Niu, Z. and Alonso, M. J. (2020) Oral delivery of biologics for precision medicine. Adv. Mater. 32, 1901935. https://doi.org/10.1002/adma.201901935
  26. Eberle, C. and Stichling, S. (2021) Impact of COVID-19 lockdown on glycemic control in patients with type 1 and type 2 diabetes mellitus: a systematic review. Diabetol. Metab. Syndr. 13, 95. https://doi.org/10.1186/s13098-021-00705-9
  27. El-Naggar, M. E., Al-Joufi, F., Anwar, M., Attia, M. F. and El-Bana, M. A. (2019) Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf. B Biointerfaces 177, 389-398. https://doi.org/10.1016/j.colsurfb.2019.02.024
  28. Emerenziani, S., Pier Luca Guarino, M., Trillo Asensio, L. M., Altomare, A., Ribolsi, M., Balestrieri, P. and Cicala, M. (2019) Role of overweight and obesity in gastrointestinal disease. Nutrients 12, 111. https://doi.org/10.3390/nu12010111
  29. Garg, V., Kaur, P., Gulati, M., Singh, S. K., Kumar, B., Pandey, N. K., Yadav, A. K., Kumar, R., Kuppusamy, G., De, A., Puttappa, N. and Wadhwa, S. (2019) Coadministration of polypeptide-k and curcumin through solid self-nanoemulsifying drug delivery system for better therapeutic effect against diabetes mellitus: formulation, optimization, biopharmaceutical characterization, and pharmacodynamic assessment. Assay Drug Dev. Technol. 17, 201-221. https://doi.org/10.1089/adt.2018.902
  30. Hatanaka, J., Chikamori, H., Sato, H., Uchida, S., Debari, K., Onoue, S. and Yamada, S. (2010) Physicochemical and pharmacological characterization of α-tocopherol-loaded nano-emulsion system. Int. J. Pharm. 396, 188-193. https://doi.org/10.1016/j.ijpharm.2010.06.017
  31. Heindel, J. J., Blumberg, B., Cave, M., Machtinger, R., Mantovani, A., Mendez, M. A., Nadal, A., Palanza, P., Panzica, G., Sargis, R., Vandenberg, L. N. and Vom Saal, F. (2017) Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 68, 3-33. https://doi.org/10.1016/j.reprotox.2016.10.001
  32. Khan, A. W., Kotta, S., Ansari, S. H., Sharma, R. K. and Ali, J. (2012) Potentials and challenges in self-nanoemulsifying drug delivery systems. Expert Opin. Drug Deliv 9, 1305-1317. https://doi.org/10.1517/17425247.2012.719870
  33. Kinnear, C., Moore, T. L., Rodriguez-Lorenzo, L., Rothen-Rutishauser, B. and Petri-Fink, A. (2017) Form follows function: nanoparticle shape and its implications for nanomedicine. Chem. Rev. 117, 11476-11521. https://doi.org/10.1021/acs.chemrev.7b00194
  34. Konda, P. Y., Poondla, V., Jaiswal, K. K., Dasari, S., Uyyala, R., Surtineni, V. P., Egi, J. Y., Masilamani, A. J. A., Bestha, L., Konanki, S., Muthulingam, M., Lingamgunta, L. K., Aloor, B. P., Tirumalaraju, S., Sade, A., Ratnam Kamsala, V., Nagaraja, S., Ramakrishnan, R. and Natesan, V. (2020) Pathophysiology of high fat diet induced obesity: impact of probiotic banana juice on obesity associated complications and hepatosteatosis. Sci. Rep. 10, 16894. https://doi.org/10.1038/s41598-020-73670-4
  35. Laha, B., Maiti, S., Sen, K. K. and Jana, S. (2019) Chapter 14 - Nanoscale polysaccharide-based particles for the delivery of therapeutic molecules. In Green Synthesis, Characterization and Applications of Nanoparticles, Micro and Nano Technol, pp. 347-368. Elsevier.
  36. Law, B. A., Liao, X., Moore, K. S., Southard, A., Roddy, P., Ji, R., Szulc, Z., Bielawska, A., Schulze, P. C. and Cowart, L. A. (2018) Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J. 32, 1403-1416. https://doi.org/10.1096/fj.201700300r
  37. Madkour, L. H. (2019) Introduction to nanotechnology (NT) and nanomaterials (NMs). In Nanoelectronic Materials, pp. 1-47. Springer, Cham.
  38. Maity, S., Mukhopadhyay, P., Kundu, P. P. and Chakraborti, A. S. (2017) Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals-an in vitro and in vivo approach. Carbohydr. Polym. 170, 124-132. https://doi.org/10.1016/j.carbpol.2017.04.066
  39. Mansoori, S., Davarnejad, R., Matsuura, T. and Ismail, A. F. (2020) Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polym. Test. 84, 106381. https://doi.org/10.1016/j.polymertesting.2020.106381
  40. McClements, D. J. (2018) Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: a review. Adv. Colloid Interface Sci. 253, 1-22. https://doi.org/10.1016/j.cis.2018.02.002
  41. Mohammadi, M., Jafari, S. M., Hamishehkar, H. and Ghanbarzadeh, B. (2020) Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci. Technol. 101, 73-88. https://doi.org/10.1016/j.tifs.2020.05.004
  42. Mohseni, R., ArabSadeghabadi, Z., Ziamajidi, N., Abbasalipourkabir, R. and RezaeiFarimani, A. (2019) Oral administration of resveratrol-loaded solid lipid nanoparticle improves insulin resistance through targeting expression of SNARE proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Res. Lett. 14, 227. https://doi.org/10.1186/s11671-019-3042-7
  43. Mortazavi, H., Nikfar, B., Esmaeili, S. A., Rafieenia, F., Saburi, E., Chaichian, S., Gorji, M. A. H. and Momtazi-Borojeni, A. A. (2020) Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance. Eur. J. Med. Chem. 187, 111951. https://doi.org/10.1016/j.ejmech.2019.111951
  44. Mukhopadhyay, P., Maity, S., Mandal, S., Chakraborti, A. S., Prajapati, A. and Kundu, P. P. (2018) Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr. Polym. 182, 42-51. https://doi.org/10.1016/j.carbpol.2017.10.098
  45. Mukhtar, Y., Galalain, A. and Yunusa, U. (2020) A modern overview on diabetes mellitus: a chronic endocrine disorder. Eur. J. Biol. 5, 1-14. https://doi.org/10.47672/ejb.409
  46. Muzzarelli, R. A., El Mehtedi, M., Bottegoni, C., Aquili, A. and Gigante, A. (2015) Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar. Drugs 13, 7314-7338. https://doi.org/10.3390/md13127068
  47. Nait Bachir, Y., Nait Bachir, R. and Hadj-Ziane-Zafour, A. (2019) Nanodispersions stabilized by β-cyclodextrin nanosponges: application for simultaneous enhancement of bioactivity and stability of sage essential oil. Drug Dev. Ind. Pharm. 45, 333-347. https://doi.org/10.1080/03639045.2018.1542705
  48. Nalini, T., Basha, S. K., Sadiq, A. M. M., Kumari, V. S. and Kaviyarasu, K. (2019) Development and characterization of alginate/chitosan nanoparticulate system for hydrophobic drug encapsulation. J. Drug Deliv. Sci. Technol. 52, 65-72. https://doi.org/10.1016/j.jddst.2019.04.002
  49. Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M. and Issaabadi, Z. (2019) Chapter 4 - Applications of nanotechnology in daily life. In Interface Science and Technology, Vol. 28, pp. 113-143. Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00004-3
  50. Natesan, V. and Kim, S. J. (2021) Diabetic nephropathy - a review of risk factors, progression, mechanism, and dietary management. Biomol. Ther. (Seoul) 29, 365-372. https://doi.org/10.4062/biomolther.2020.204
  51. Natesan, V. and Kim, S. J. (2022) Metabolic bone diseases and new drug developments. Biomol. Ther. (Seoul) 30, 309-319. https://doi.org/10.4062/biomolther.2022.007
  52. Nie, X., Chen, Z., Pang, L., Wang, L., Jiang, H., Chen, Y., Zhang, Z., Fu, C., Ren, B. and Zhang, J. (2020) Oral Nano drug delivery systems for the treatment of type 2 diabetes mellitus: an available administration strategy for antidiabetic phytocompounds. Int. J. Nanomed. 15, 10215-10240. https://doi.org/10.2147/IJN.S285134
  53. Philibert, T., Lee, B. H. and Fabien, N. (2017) Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol. 181, 1314-1337. https://doi.org/10.1007/s12010-016-2286-2
  54. Purohit, R., Mittal, A., Dalela, S., Warudkar, V., Purohit, K. and Purohit, S. (2017) Social, environmental and ethical impacts of nanotechnology. Mater. Today Proc. 4, 5461-5467. https://doi.org/10.1016/j.matpr.2017.05.058
  55. Rahman, H. S., Othman, H. H., Hammadi, N. I., Yeap, S. K., Amin, K. M., Samad, N. A. and Alitheen, N. B. (2020) Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomed. 15, 2439-2483. https://doi.org/10.2147/IJN.S227805
  56. Ramakrishnan, A. and Vijayakumar, N. (2017) Urea cycle pathway targeted therapeutic action of naringin against ammonium chloride induced hyperammonemic rats. Biomed. Pharmacother. 94, 1028-1037. https://doi.org/10.1016/j.biopha.2017.08.028
  57. Ramakrishnan, A., Vijayakumar, N. and Renuka, M. (2016) Effect of naringin on ammonium chloride-induced hyperammonemic rats: a dose-dependent study. J. Acute Med. 6, 55-60. https://doi.org/10.1016/j.jacme.2016.08.001
  58. Ramya, A., Vijayakumar, N. and Renuka, M. (2015) Antiarthritic effect of aqueous extarct of lawsonia inermis.l - an invitro study. Int. J. Modn. Res. Revs. 3, 744-747.
  59. Rani, R., Dahiya, S., Dhingra, D., Dilbaghi, N., Kim, K. H. and Kumar, S. (2018) Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem. Biol. Interact. 295, 119-132. https://doi.org/10.1016/j.cbi.2018.02.006
  60. Reddi Nagesh, M., Vijayakumar, N. and Keserla Bhavani, K. (2020) A review on diabetes mellitus- an annihilatory metabolic disorder. J. Pharm. Sci. Res. 12, 232-235.
  61. Rehman, A., Jafari, S. M., Tong, Q., Riaz, T., Assadpour, E., Aadil, R. M., Niazi, S., Khan, I. M., Shehzad, Q., Ali, A. and Khan, S. (2020) Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv. Colloid Interface Sci. 284, 102251. https://doi.org/10.1016/j.cis.2020.102251
  62. Rehman, F. U., Shah, K. U., Shah, S. U., Khan, I. U., Khan, G. M. and Khan, A. (2017) From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opin. Drug Deliv. 14, 1325-1340. https://doi.org/10.1080/17425247.2016.1218462
  63. Rosenberg, K. J., Goren, T., Crockett, R. and Spencer, N. D. (2011) Load-induced transitions in the lubricity of adsorbed poly (l-lysine)- g-dextran as a Function of polysaccharide chain density. ACS Appl. Mater. Interfaces 3, 3020-3025. https://doi.org/10.1021/am200521m
  64. Rostamabadi, H., Falsafi, S. R. and Jafari, S. M. (2019) Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Control. Release 298, 38-67. https://doi.org/10.1016/j.jconrel.2019.02.005
  65. Sailor, G. U. (2021) Self-nanoemulsifying drug delivery systems (SNEDDS): an innovative approach to improve oral bioavailability. In Nanocarriers: Drug Delivery System, pp. 255-280. Springer.
  66. Shaker, D. S., Ishak, R. A., Ghoneim, A. and Elhuoni, M. A. (2019) Nanoemulsion: a review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci. Pharm. 87, 17. https://doi.org/10.3390/scipharm87030017
  67. Singh, A. K., Pandey, H., Ramteke, P. W. and Mishra, S. B. (2019) Nano-suspension of ursolic acid for improving oral bioavailability and attenuation of type II diabetes: a histopathological investigation. Biocatal. Agric. Biotechnol. 22, 101433. https://doi.org/10.1016/j.bcab.2019.101433
  68. Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K. and Chourasia, M. K. (2017) Nanoemulsion: concepts, development and applications in drug delivery. J. Control. Release 252, 28-49. https://doi.org/10.1016/j.jconrel.2017.03.008
  69. Sipponen, M. H., Henn, A., Penttila, P. and Osterberg, M. (2020) Lignin-fatty acid hybrid nanocapsules for scalable thermal energy storage in phase-change materials. Chem. Eng. J. 393, 124711. https://doi.org/10.1016/j.cej.2020.124711
  70. Sirdah, M. M. and Reading, N. S. (2020) Genetic predisposition in type 2 diabetes: a promising approach toward a personalized management of diabetes. Clin. Genet. 98, 525-547. https://doi.org/10.1111/cge.13772
  71. Sivakumar, M., Tang, S. Y. and Tan, K. W. (2014) Cavitation technology-a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrason. Sonochem. 21, 2069-2083. https://doi.org/10.1016/j.ultsonch.2014.03.025
  72. Souto, E. B., Souto, S. B., Campos, J. R., Severino, P., Pashirova, T. N., Zakharova, L. Y., Silva, A. M., Durazzo, A., Lucarini, M., Izzo, A. A. and Santini, A. (2019) Nanoparticle delivery systems in the treatment of diabetes complications. Molecules 24, 4209. https://doi.org/10.3390/molecules24234209
  73. Tahir, H. E., Xiaobo, Z., Mahunu, G. K., Arslan, M., Abdalhai, M. and Zhihua, L. (2019) Recent developments in gum edible coating applications for fruits and vegetables preservation: a review. Carbohydr. Polym. 224, 115141. https://doi.org/10.1016/j.carbpol.2019.115141
  74. Thapa, C., Ahad, A., Aqil, M., Imam, S. S. and Sultana, Y. (2018) Formulation and optimization of nanostructured lipid carriers to enhance oral bioavailability of telmisartan using Box-Behnken design. J. Drug Deliv. Sci. Technol. 44, 431-439. https://doi.org/10.1016/j.jddst.2018.02.003
  75. Verma, A. K., Goyal, Y., Bhatt, D., Dev, K., Alsahli, M. A., Rahmani, A. H. and Almatroudi, A. (2021) A compendium of perspectives on diabetes: a challenge for sustainable health in the modern era. Diabetes Metab. Syndr. Obes. Targets Ther. 14, 2775-2787. https://doi.org/10.2147/DMSO.S304751
  76. Vijayakumar, N (2014) Hepatoprotective effect of Semecarpus anacardiumin rats: a molecular approach. Int. J. Biol. Sci. 5, 175-182.
  77. Vijayakumar, N. and Subramanian, P. (2010a) Protective effect of Semecarpus Anacardium nut extract against hyperammonemia in rats. J. Herb. Med. Toxicol. 4, 77-82.
  78. Vijayakumar, N. and Subramanian, P. (2010b) Neuroprotective effect of semecarpus anacardium against hyperammonemia in rats. J. Pharm. Res. 3,1564-1568.
  79. Viswanathan, P., Muralidaran, Y. and Ragavan, G. (2017) Chapter 7 - Challenges in oral drug delivery: a nano-based strategy to overcome. In Nanostructures for Oral Medicine, pp. 173-201. Elsevier.
  80. Wang, H., Li, Q., Deng, W., Omari-Siaw, E., Wang, Q., Wang, S., Wang, S., Cao, X., Xu, X. and Yu, J. (2015) Self-nanoemulsifying drug delivery system of trans-cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model. Drug Dev. Res. 76, 82-93. https://doi.org/10.1002/ddr.21244
  81. Wang, H., Xu, Z., Zhao, M., Liu, G. and Wu, J. (2021) Advances of hydrogel dressings in diabetic wounds. Biomater. Sci. 9, 1530-1546. https://doi.org/10.1039/D0BM01747G
  82. Wasupalli, G. K. and Verma, D. (2018) Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate based polyelectrolyte complexes. Int. J. Biol. Macromol. 114, 10-17. https://doi.org/10.1016/j.ijbiomac.2018.03.075
  83. Wu, D., Zhu, L., Li, Y., Zhang, X., Xu, S., Yang, G. and Delair, T. (2020) Chitosan-based colloidal polyelectrolyte complexes for drug delivery: a review. Carbohydr. Polym. 238, 116126. https://doi.org/10.1016/j.carbpol.2020.116126
  84. Xu, H. Y., Liu, C. S., Huang, C. L., Chen, L., Zheng, Y. R., Huang, S. H. and Long, X. Y. (2019) Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf. B Biointerfaces 181, 927-934. https://doi.org/10.1016/j.colsurfb.2019.06.006
  85. Zhou, Y., Wang, J., Gu, Z., Wang, S., Zhu, W., Acena, J. L., Soloshonok, V. A., Izawa, K. and Liu, H. (2016) Next generation of fluorinecontaining pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem. Rev. 116, 422-518. https://doi.org/10.1021/acs.chemrev.5b00392
  86. Zhu, W. and Zhang, Z. (2014) Preparation and characterization of catechin-grafted chitosan with antioxidant and antidiabetic potential. Int. J. Biol. Macromol. 70, 150-155. https://doi.org/10.1016/j.ijbiomac.2014.06.047