DOI QR코드

DOI QR Code

Loganin Prevents Hepatic Steatosis by Blocking NLRP3 Inflammasome Activation

  • Joo Hyeon, Jang (College of Pharmacy, The Catholic University of Korea) ;
  • Gabsik, Yang (Department of Pharmacology, College of Korean Medicine, Woosuk University) ;
  • Jin Kyung, Seok (College of Pharmacy, The Catholic University of Korea) ;
  • Han Chang, Kang (College of Pharmacy, The Catholic University of Korea) ;
  • Yong-Yeon, Cho (College of Pharmacy, The Catholic University of Korea) ;
  • Hye Suk, Lee (College of Pharmacy, The Catholic University of Korea) ;
  • Joo Young, Lee (College of Pharmacy, The Catholic University of Korea)
  • Received : 2022.06.04
  • Accepted : 2022.08.25
  • Published : 2023.01.01

Abstract

Activation of the NLRP3 inflammasome is a necessary process to induce fibrosis in nonalcoholic fatty liver disease (NAFLD). Nonalcoholic steatohepatitis (NASH) is a kind of NAFLD that encompasses the spectrum of liver disease. It is characterized by inflammation and ballooning of hepatocytes during steatosis. We tested whether inhibiting the NLRP3 inflammasome could prevent the development and pathology of NASH. We identified loganin as an inhibitor of the NLRP3 inflammasome and investigated whether in vivo administration of loganin prevented NASH symptoms using a methionine-choline deficient (MCD) diet model in mice. We found that loganin inhibited the NLRP3 inflammasome activation triggered by ATP or nigericin, as shown by suppression of the production of interleukin (IL)-1β and caspase-1 (p10) in mouse primary macrophages. The speck formation of apoptosisassociated speck-like protein containing a caspase recruitment domain (ASC) was blocked by loganin, showing that the assembly of the NLRP3 inflammasome complex was impaired by loganin. Administration of loganin reduced the clinical signs of NASH in mice fed the MCD diet, including hepatic inflammation, fat accumulation, and fibrosis. In addition, loganin reduced the expression of NLRP3 inflammasome components in the liver. Our findings indicate that loganin alleviates the inflammatory symptoms associated with NASH, presumably by inhibiting NLRP3 inflammasome activation. In summary, these findings imply that loganin may be a novel nutritional and therapeutic treatment for NASH-related inflammation.

Keywords

Acknowledgement

This study was supported by grants from the National Research Foundation of Korea (NRF) (NRF-2019R1A2C2085739 and NRF-2020R1A4A2002894) funded by the Korean government (Ministry of Science, ICT and Future Planning).

References

  1. Berna, G. and Romero-Gomez, M. (2020) The role of nutrition in non-alcoholic fatty liver disease: pathophysiology and management. Liver Int. 40 Suppl 1, 102-108. https://doi.org/10.1111/liv.14360
  2. Bryan, N. B., Dorfleutner, A., Kramer, S. J., Yun, C., Rojanasakul, Y. and Stehlik, C. (2010) Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes. J. Inflamm. (Lond.) 7, 23. https://doi.org/10.1186/1476-9255-7-23
  3. Bryan, N. B., Dorfleutner, A., Rojanasakul, Y. and Stehlik, C. (2009) Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J. Immunol. 182, 3173-3182. https://doi.org/10.4049/jimmunol.0802367
  4. Cheng, Y. C., Chu, L. W., Chen, J. Y., Hsieh, S. L., Chang, Y. C., Dai, Z. K. and Wu, B. N. (2020) Loganin attenuates high glucose-induced schwann cells pyroptosis by inhibiting ROS generation and NLRP3 inflammasome activation. Cells 9, 1948. https://doi.org/10.3390/cells9091948
  5. Dhamija, E., Paul, S. B. and Kedia, S. (2019) Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: an increasing concern. Indian J. Med. Res. 149, 9-17. https://doi.org/10.4103/ijmr.ijmr_1456_17
  6. Dixon, L. J., Berk, M., Thapaliya, S., Papouchado, B. G. and Feldstein, A. E. (2012) Caspase-1-mediated regulation of fibrogenesis in dietinduced steatohepatitis. Lab. Invest. 92, 713-723. https://doi.org/10.1038/labinvest.2012.45
  7. Han, Y. H., Lee, K., Saha, A., Han, J., Choi, H., Noh, M., Lee, Y. H. and Lee, M. O. (2021) Specialized proresolving mediators for therapeutic interventions targeting metabolic and inflammatory disorders. Biomol. Ther. (Seoul) 29, 455-464. https://doi.org/10.4062/biomolther.2021.094
  8. Hu, J., Zhou, J., Wu, J., Chen, Q., Du, W., Fu, F., Yu, H., Yao, S., Jin, H., Tong, P., Chen, D., Wu, C. and Ruan, H. (2020) Loganin ameliorates cartilage degeneration and osteoarthritis development in an osteoarthritis mouse model through inhibition of NF-κB activity and pyroptosis in chondrocytes. J. Ethnopharmacol. 247, 112261. https://doi.org/10.1016/j.jep.2019.112261
  9. Huang, J., Zhang, Y., Dong, L., Gao, Q., Yin, L., Quan, H., Chen, R., Fu, X. and Lin, D. (2018) Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. J. Ethnopharmacol. 213, 280-301. https://doi.org/10.1016/j.jep.2017.11.010
  10. Lee, H. E., Yang, G., Kim, N. D., Jeong, S., Jung, Y., Choi, J. Y., Park, H. H. and Lee, J. Y. (2016) Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: a novel strategy to treat acute gout. Sci. Rep. 6, 38622. https://doi.org/10.1038/srep38622
  11. Liu, K., Xu, H., Lv, G., Liu, B., Lee, M. K., Lu, C., Lv, X. and Wu, Y. (2015) Loganin attenuates diabetic nephropathy in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products. Life Sci. 123, 78-85. https://doi.org/10.1016/j.lfs.2014.12.028
  12. Loomba, R. and Sanyal, A. J. (2013) The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10, 686-690. https://doi.org/10.1038/nrgastro.2013.171
  13. Michelotti, G. A., Machado, M. V. and Diehl, A. M. (2013) NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656-665. https://doi.org/10.1038/nrgastro.2013.183
  14. Mridha, A. R., Wree, A., Robertson, A. A. B., Yeh, M. M., Johnson, C. D., Van Rooyen, D. M., Haczeyni, F., Teoh, N. C., Savard, C., Ioannou, G. N., Masters, S. L., Schroder, K., Cooper, M. A., Feldstein, A. E. and Farrell, G. C. (2017) NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037-1046. https://doi.org/10.1016/j.jhep.2017.01.022
  15. Schattenberg, J. M. and Bergheim, I. (2019) Nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD). Nutrients 11, 588. https://doi.org/10.3390/nu11030588
  16. Schroder, K. and Tschopp, J. (2010) The inflammasomes. Cell 140, 821-832. https://doi.org/10.1016/j.cell.2010.01.040
  17. Seok, J. K., Kang, H. C., Cho, Y. Y., Lee, H. S. and Lee, J. Y. (2020) Regulation of the NLRP3 inflammasome by post-translational modifications and small molecules. Front. Immunol. 11, 618231.
  18. Seok, J. K., Kang, H. C., Cho, Y. Y., Lee, H. S. and Lee, J. Y. (2021) Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch. Pharm. Res. 44, 16-35. https://doi.org/10.1007/s12272-021-01307-9
  19. Shin, H. K., Florean, O., Hardy, B., Doktorova, T. and Kang, M. G. (2022) Semi-automated approach for generation of biological networks on drug-induced cholestasis, steatosis, hepatitis, and cirrhosis. Toxicol. Res. 38, 393-407. https://doi.org/10.1007/s43188-022-00124-6
  20. Wang, J. W., Pan, Y. B., Cao, Y. Q., Wang, C., Jiang, W. D., Zhai, W. F. and Lu, J. G. (2020) Loganin alleviates LPS-activated intestinal epithelial inflammation by regulating TLR4/NF-κB and JAK/STAT3 signaling pathways. Kaohsiung J. Med. Sci. 36, 257-264. https://doi.org/10.1002/kjm2.12160
  21. Wen, H., Xing, L., Sun, K., Xiao, C., Meng, X. and Yang, J. (2020) Loganin attenuates intestinal injury in severely burned rats by regulating the toll-like receptor 4/NF-κB signaling pathway. Exp. Ther. Med. 20, 591-598. https://doi.org/10.3892/etm.2020.8725
  22. Wree, A., Eguchi, A., McGeough, M. D., Pena, C. A., Johnson, C. D., Canbay, A., Hoffman, H. M. and Feldstein, A. E. (2014) NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59, 898-910. https://doi.org/10.1002/hep.26592
  23. Xu, H., Shen, J., Liu, H., Shi, Y., Li, L. and Wei, M. (2006) Morroniside and loganin extracted from Cornus officinalis have protective effects on rat mesangial cell proliferation exposed to advanced glycation end products by preventing oxidative stress. Can. J. Physiol. Pharmacol. 84, 1267-1273. https://doi.org/10.1139/y06-075
  24. Yamabe, N., Noh, J. S., Park, C. H., Kang, K. S., Shibahara, N., Tanaka, T. and Yokozawa, T. (2010) Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Eur. J. Pharmacol. 648, 179-187. https://doi.org/10.1016/j.ejphar.2010.08.044
  25. Yang, G., Jang, J. H., Kim, S. W., Han, S. H., Ma, K. H., Jang, J. K., Kang, H. C., Cho, Y. Y., Lee, H. S. and Lee, J. Y. (2020a) Sweroside prevents non-alcoholic steatohepatitis by suppressing activation of the NLRP3 inflammasome. Int. J. Mol. Sci. 21, 2790. https://doi.org/10.3390/ijms21082790
  26. Yang, G., Lee, H. E. and Lee, J. Y. (2016) A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet. Sci. Rep. 6, 24399. https://doi.org/10.1038/srep24399
  27. Yang, G., Lee, H. E., Moon, S. J., Ko, K. M., Koh, J. H., Seok, J. K., Min, J. K., Heo, T. H., Kang, H. C., Cho, Y. Y., Lee, H. S., Fitzgerald, K. A. and Lee, J. Y. (2020b) Direct binding to NLRP3 pyrin domain as a novel strategy to prevent NLRP3-driven inflammation and gouty arthritis. Arthritis Rheumatol. 72, 1192-1202. https://doi.org/10.1002/art.41245
  28. Yeon, S. H., Yang, G., Lee, H. E. and Lee, J. Y. (2017) Oxidized phosphatidylcholine induces the activation of NLRP3 inflammasome in macrophages. J. Leukoc. Biol. 101, 205-215. https://doi.org/10.1189/jlb.3VMA1215-579RR
  29. Yuan, J., Cheng, W., Zhang, G., Ma, Q., Li, X., Zhang, B., Hu, T. and Song, G. (2020) Protective effects of iridoid glycosides on acute colitis via inhibition of the inflammatory response mediated by the STAT3/NF-кB pathway. Int. Immunopharmacol. 81, 106240. https://doi.org/10.1016/j.intimp.2020.106240