DOI QR코드

DOI QR Code

Effects of gene-lifestyle environment interactions on type 2 diabetes mellitus development: an analysis using the Korean Genome and Epidemiology Study data

유전 요인과 생활환경 요인의 상호작용이 제2형 당뇨병 발생에 미치는 영향: 한국인유전체역학 조사사업(KoGES) 자료를 이용하여

  • Received : 2023.01.31
  • Accepted : 2023.02.22
  • Published : 2023.02.28

Abstract

Purpose: This study focused on identifying the interaction effects of genetic and lifestyle-environmental factors on the development of type 2 diabetes mellitus (T2D). Methods: Study subjects were selected from the Korean Genome and Epidemiology Study (KoGES) from 2001 to 2014. Data on genetic variations, anthropometric measurements, biochemical data, and seven lifestyle factors (diet, physical activity, alcohol drinking, smoking, sleep, depression, and stress) were obtained from 4,836 Koreans aged between 40 and 59 years, including those with T2D at baseline (n = 1,209), newly developed T2D (n= 1,298) and verified controls (n = 3,538). The genetic risk score (GRS) was calculated by using 11 single-nucleotide polymorphisms (SNPs) related to T2D development and the second quartile was used as the reference category. A Cox proportional hazards regression model was used to evaluate the associations of GRS and lifestyle factors with T2D risk, controlling for covariates. Results: Multivariate regression analysis revealed that GRS was the strongest risk factor for T2D, and body mass index (BMI), smoking, drinking, and spicy food preference also increased the risk. Lifestyle/environmental factors that showed significant interactions with GRS were BMI, current smoking, current drinking, fatty food preference, and spicy food preference. Conclusions: Interactions between genetic factors and lifestyle/environmental factors were associated with an increased risk of T2D. The results will be useful to provide a new perspective on genetic profiling for the earlier detection of T2D risk and clues for personalized interventions, which might be more effective prevention strategies or therapies in individuals with a genetic predisposition to T2D.

Keywords

References

  1. American Diabetes Association. Standards of medical care in diabetes-2016 abridged for primary care providers. Clinical Diabetes: American Diabetes Association. 2016;34(1):3-21. https://doi.org/10.2337/diaclin.34.1.3
  2. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. The Lancet. 2014;383(9922):1068-1083. https://doi.org/10.1016/s0140-6736(13)62154-6
  3. Bonnefond A, Froguel P. Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metabolism. 2015;21(3):357-368. https://doi.org/10.1016/j.cmet.2014.12.020
  4. Caswell-Jin JL, Gupta T, Hall E, Petrovchich IM, Mills MA, Kingham KE, et al. Racial/ethnic differences in multiple-gene sequencing results for hereditary cancer risk. Genetics in Medicine. 2018;20(2):234-239. https://doi.org/10.1038/gim.2017.96
  5. Go MJ, Lee Y, Park S, Kwak SH, Kim BJ, Lee J. Genetic-risk assessment of GWAS-derived susceptibility loci for type 2 diabetes in a 10 year follow-up of a population-based cohort study. Journal of Human Genetics. 2016;61(12):1009-1012. https://doi.org/10.1038/jhg.2016.93
  6. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Supplement_1):S13-S27. https://doi.org/10.2337/dc18-s002
  7. Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Medicine. 2017;15:131. https://doi.org/10.1186/s12916-017-0901-x
  8. Dorajoo R, Liu J, Boehm BO. Genetics of type 2 diabetes and clinical utility. Genes. 2015;6(2):372-384. https://doi.org/10.3390/genes6020372
  9. Franks PW. Gene × environment interactions in type 2 diabetes. Current Diabetes Reports. 2011;11(6):552-561. https://doi.org/10.1007/s11892-011-0224-9
  10. Kilpelainen TO, Franks PW. Gene-physical activity interactions and their impact on diabetes. Diabetes and Physical Activity. 2014;60:94-103. https://doi.org/10.1159/000357339
  11. Patel CJ, Chen R, Kodama K, Ioannidis JP, Butte AJ. Systematic identification of interaction effects between genome-and environment-wide associations in type 2 diabetes mellitus. Human Genetics. 2013;132:495-508. https://doi.org/10.1007/s00439-012-1258-z
  12. Brito EC, Lyssenko V, Renstrom F, Berglund G, Nilsson PM, Groop L, et al. Previously associated type 2 diabetes variants may interact with physical activity to modify the risk of impaired glucose regulation and type 2 diabetes: a study of 16,003 Swedish adults. Diabetes. 2009;58(6):1411-1418. https://doi.org/10.2337/db08-1623
  13. Park HY, Choi HJ, Hong YC. Utilizing genetic predisposition score in predicting risk of type 2 diabetes mellitus incidence: a community-based cohort study on middle-aged Koreans. Journal of Korean Medical Science. 2015;30(8):1101-1109. https://doi.org/10.3346/jkms.2015.30.8.1101
  14. Kim Y, Han BG, KoGES Group. Cohort profile: the Korean genome and epidemiology study (KoGES) consortium. International Journal of Epidemiology. 2017;46(4):e20-e20. https://doi.org/10.1093/ije/dyv316
  15. Sham PC, Purcell SM. Statistical power and significance testing in large-scale genetic studies. Nature Reviews Genetics. 2014;15(5):335-346. https://doi.org/10.1038/nrg3706
  16. Gauderman WJ. Sample size requirements for matched case-control studies of gene-environment interaction. Statistics in Medicine. 2002;21(1):35-50. https://doi.org/10.1002/sim.973
  17. Ahn Y, Kwon E, Shim JE, Park MK, Joo Y, Kim K, et al. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. European Journal of Clinical Nutrition. 2007;61(12):1435-1441. https://doi.org/10.1038/sj.ejcn.1602657
  18. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Medicine & Science in Sports & Exercise. 2003;35(8):1381-1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB
  19. Beck AT, Steer RA. Internal consistencies of the original and revised Beck Depression Inventory. Journal of Clinical Psychology. 1984;40(6):1365-1367. https://doi.org/10.1002/1097-4679(198411)40:6<1365::aid-jclp2270400615>3.0.co;2-d
  20. Chang SJ, Cha BS, Park JK, Lee EK. Standardization of stress measurement scale. The Journal of Wonju College of Medicine. 1994;7(1):21-38.
  21. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, et al. Largescale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nature Genetics. 2011;43(10):990-995. https://doi.org/10.1038/ng.939
  22. Szabo M, Mate B, Csep K, Benedek T. Genetic approaches to the study of gene variants and their impact on the pathophysiology of type 2 diabetes. Biochemical Genetics. 2018;56(1-2):22-55. https://doi.org/10.1007/s10528-017-9827-4
  23. Peng F, Hu D, Gu C, Li X, Li Y, Jia N, et al. The relationship between five widely-evaluated variants in CDKN2A/B and CDKAL1 genes and the risk of type 2 diabetes: a meta-analysis. Gene. 2013;531(2):435-443. https://doi.org/10.1016/j.gene.2013.08.075
  24. Zhang J, McKenna LB, Bogue CW, Kaestner KH. The diabetes gene Hhex maintains δ-cell differentiation and islet function. Genes & Development. 2014;28(8):829-834. https://doi.org/10.1101/gad.235499.113
  25. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568-572. https://doi.org/10.2337/diabetes.52.2.568
  26. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nature Genetics. 2008;40(9):1092-1097. https://doi.org/10.1038/ng.207
  27. Li Q, Tang TT, Jiang F, Zhang R, Chen M, Yin J, et al. Polymorphisms of the KCNQ1 gene are associated with the therapeutic responses of sulfonylureas in Chinese patients with type 2 diabetes. Acta Pharmacologica Sinica. 2017;38(1):80-89. https://doi.org/10.1038/aps.2016.103
  28. Gu HF. Genetic, epigenetic and biological effects of zinc transporter (SLC30A8) in type 1 and type 2 diabetes. Current Diabetes Reviews. 2017;13(2):132-140. https://doi.org/10.2174/1573399812666151123104540
  29. Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield MJ, Devlin JJ, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. The Lancet. 2015;385(9984):2264-2271. https://doi.org/10.1016/S0140-6736(14)61730-X
  30. Phillips PC. Epistasis-the essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics. 2008;9(11):855-867. https://doi.org/10.1038/nrg2452
  31. Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. New England Journal of Medicine,. 2008;359(21):2208-2219. https://doi.org/10.1056/NEJMoa0804742
  32. Mahajan A, Go MJ, Zhang W, Jennifer EB, Kyle JG, Teresa F, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics. 2014;46(3):234-244. https://doi.org/10.1038/ng.2897
  33. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331-1336. https://doi.org/10.1126/science.1142358
  34. McCarthy MI. Genomics, type 2 diabetes, and obesity. New England Journal of Medicine. 2010;363(24):2339-2350. https://doi.org/10.1056/NEJMra0906948
  35. Sargeant LA, Khaw KT, Bingham S, Day NE, Luben RN, Oakes S, et al. Cigarette smoking and glycaemia: the EPIC-Norfolk study. International Journal of Epidemiology. 2001;30(3):547-554. https://doi.org/10.1093/ije/30.3.547
  36. Eliasson B. Cigarette smoking and diabetes. Progress in Cardiovascular Diseases. 2003;45(5):405-413. https://doi.org/10.1053/pcad.2003.00103
  37. Lee DY, Yoo MG, Kim HJ, Jang HB, Kim JH, Lee H, et al. Association between alcohol consumption pattern and the incidence risk of type 2 diabetes in Korean men: a 12-years follow-up study. Scientific Reports. 2017;7(1):7322. https://doi.org/10.1038/s41598-017-07549-2
  38. Dale KS, Mann JI, McAuley KA, Williams SM, Farmer VL. Sustainability of lifestyle changes following an intensive lifestyle intervention in insulin resistant adults: follow-up at 2-years. Asia Pacific Journal of Clinical Nutrition. 2008;18(1):114-120. https://search.informit.org/doi/10.3316/ielapa.682420607164472
  39. Lee JE, Kim JH, Ahn YJ, Park C, Jung IK. Study on the eating habits and food preferences by obesity in Korean adults. Journal of the Korean Home Economics Association. 2006;44(10):67-77.
  40. Langenberg C, Sharp SJ, Franks PW, Scott RA, Deloukas P, Forouhi NG, et al. Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study. PLOS Medicine. 2014;11(5):e1001647. https://doi.org/10.1371/journal.pmed.1001647