DOI QR코드

DOI QR Code

형태와 색상의 복합형 필터를 이용한 제방 LiDAR 측량 데이터의 식생 영상 제거 기법 연구

Vegetation filtering techniques for LiDAR data of levees using combined filters with morphology and color

  • 박희성 (한국건설기술연구원 수자원하천연구본부) ;
  • 이두한 (한국건설기술연구원 수자원하천연구본부)
  • Park, Heeseong (Department of Hydro Sciencer and Engineering Research, Korea Institute of Civll Engineering and Building Technology) ;
  • Lee, Du Han (Department of Hydro Sciencer and Engineering Research, Korea Institute of Civll Engineering and Building Technology)
  • 투고 : 2022.11.30
  • 심사 : 2023.01.25
  • 발행 : 2023.02.28

초록

지상 LiDAR 측량은 구조물이나 지형의 시간별 변형을 쉽게 파악할 수 있어 토목시설물의 유지관리에 활용성이 높다. 그러나 제방과 같은 하천시설물은 식생의 영향으로 식생 하부의 지형이나 구조물의 변형을 파악하기 어렵다. 식생 제거 필터는 색상필터와 형태필터로 구분할 수 있다. 본 연구에서는 식생필터의 정확도 향상을 위해 색상과 지형을 결합한 복합필터를 개발하였다. 8개의 색상필터, 6개의 지형필터, 4개의 복합필터를 제방 비탈면의 식생제거에 적용하여 정확도와 계산시간을 비교하였다. 색상필터는 계산시간은 짧으나 식생 영역에서 정확도가 낮게 나타났다. 형태필터는 식생 영역에서는 정확도가 높으나 거석 등 국부적 지형 변화가 심한 곳에는 정확도 낮게 나타났다. 복합필터도 대체로 지형필터와 유사한 경향을 나타내나 ExGGM의 경우 식생 영역과 거석 영역 모두에서 정확도가 우수하였다. 정확도와 계산시간을 고려하며 일반적인 경우에는 복합필터인 ExGGM이 적합하며, 국부적인 지형 변화가 심하지 않은 경우에는 형태필터인 GrMIn 또는 복합필터인 ExGISL이 적합한 것으로 나타났다.

Terretial LiDAR surveying is highly useful for maintenance of civil facilities as it can easily detect the temporal deformation of structures or topography. However, for river facilities such as levess, it is difficult to detect the deformation of the topography or structure under vegetations due to the influence of vegetation. Vegetation filters can be divided into color filters and morphological filters. In this study, combined filters with color and morphology are developed to improve the accuracy of vegetation filters. 8 color filters, 6 morphological filters, and 4 combined filters are applied to the vegetation removal on the embankment slope, and their accuracy and calculation time are compared. Color filters show a short calculation time, but the accuracy was low in the vegetation area. Morphological filters show high accuracy in the vegetation area, but low accuracy in places with severe local topographical changes such as heavy rocks. Combined filters also show a tendency similar to morphological filters, but in the case of ExGGM, the accuracy is excellent in both the vegetation and rock area. Considering the accuracy and calculation time, the combined filter ExGGM is suitable for general cases, and the shape filter GrMIn or the complex filter ExGISL is suitable for cases where the local topographical change is not severe.

키워드

과제정보

본 연구는 한국건설기술연구원 자체연구사업 '고강도 합성수지를 이용한 제방 배수관 차수벽 초간편 시공 기술 실증연구'의 지원으로 수행되었음.

참고문헌

  1. Anders, N., Valente, J., Masselink, R., and Keesstra, S. (2019). "Comparing filtering techniques for removing vegetation from UAV-Based photogrammetric point clouds." Drones, Vol. 3, No. 3, 61. doi: 10.3390/drones3030061.
  2. Axelsson, P. (2000). "DEM generation from laser scanner data using adaptive TIN models." International Archives of the Photogrammetry and Remote Sensing, Vol. 33, No. Part B4, pp. 110-117.
  3. Burgos-Artizzu, X.P., Ribeiro, A., Guijarro, M., and Pajares, G. (2011). "Real-time image processing for crop/weed discrimination in maize fields." Computers and Electronics in Agriculture, Vol. 75, No. 2, pp. 337-346. doi: 10.1016/j.compag.2010.12.011.
  4. Dowle, M., and Srinivasan, A. (2022). Data.table: Extension of 'data.frame' R package version 1.14.6, accessed 28 November 2022, .
  5. Hague, T., Tillett, N.D., and Wheeler, H. (2006). "Automated crop and weed monitoring in widely spaced cereals." Precision Agriculture, Vol. 7, No. 1, pp. 21-32. doi: 10.1007/s11119-005-6787-1.
  6. Hunt, E.R., Cavigelli, M., Daughtry, C.S.T., Mcmurtrey, J.E., and Walthall, C.L. (2005). "Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status." Precision Agriculture, Vol. 6, No. 4, pp. 359-378. doi: 10.1007/s11119-005-2324-5.s.
  7. Kataoka, T., Kaneko, T., Okamoto, H., and Hata, S. (2003). "Crop growth estimation system using machine vision." Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), IEEE, Kobe, Japan, Vol. 2, pp. b1079-b1083.
  8. Kraus, K., and Pfeifer, N. (1998). "Determination of terrain models in wooded areas with airborne laser scanner data." ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 53, No. 4, pp. 193-203. doi: 10.1016/S0924-2716(98)00009-4.
  9. Meng, X., Currit, N., and Zhao, K. (2010). "Ground filtering algorithms for airborne LiDAR data: A review of critical issues." Remote Sensing, Vol. 2, No. 3, pp. 833-860. doi: 10.3390/rs2030833.
  10. Meyer, G.E., Camargo Neto. J., Jones, D.D., and Hindman, T.W. (2004). "Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images." Computers and Electronics in Agriculture, Vol. 42, No. 3, pp. 161-180. doi: 10.1016/j.compag.2003.08.002.
  11. Meyer, G.E., Hindman, T.W., and Lakshmi, K. (1998). "Machine vision detection parameters for plant species identification." Precision Agriculture and Biological Quality, SPIE, Boston, MA, U.S., Vol. 3543, pp. 327-335. doi: 10.1117/12.336896.
  12. Ministry of Land, Transport and Maritime Affairs (MLTM) (2012). Manual of river maintenance and repair.
  13. Montealegre, A.L., Lamelas, M.T., and de la Riva, J. (2015). "A comparison of open-source lidar filtering algorithms in a mediterranean forest environment." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 8, pp. 4072-4085. doi: 10.1109/JSTARS.2015.2436974.
  14. Park, H., and Lee, D.H. (2021). "Comparative analysis of filtering techniques for vegetation points removal from photogrammetric point clouds at the stream levee." Ecology and Resilient Infrastructure, Vol. 8, No. 4, pp. 233-244. doi: 10.17820/ERI.2021.8.4.233.
  15. Pingel, T.J., Clarke, K.C., and McBride, W.A. (2013). "An improved simple morphological filter for the terrain classification of airborne LIDAR data:" ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 77, pp. 21-30. doi: 10.1016/j.isprsjprs.2012.12.002.
  16. Planetary Habitability Laboratory (PHL) (2022). Visible vegetation index (VVI), accessed 28 November 2022, .
  17. Roussel, J.R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H., Meador, A.S., Bourdon, J.-F., de Boissieu, F., and Achim, A. (2020). "lidR: An R package for analysis of Airborne Laser Scanning (ALS) data." Remote Sensing of Environment, Vol. 251, 112061. doi: 10.1016/j.rse.2020.112061.
  18. Tian, L.F., and Slaughter, D.C. (1998). "Environmentally adaptive segmentation algorithm for outdoor image segmentation." Computers and Electronics in Agriculture, Vol. 21, No. 3, pp. 153-168. doi: 10.1016/S0168-1699(98)00037-4.
  19. Woebbecke, D.M., Meyer, G.E., Bargen, K.V., and Mortensen, D.A. (1995). "Color indices for weed identification under various soil, residue, and lighting conditions." Transactions of the ASAE, Vol. 38, No. 1, pp. 259-269. doi: 10.13031/2013.27838.
  20. Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., and Zhang, C. (2003). "A progressive morphological filter for removing nonground measurements from airborne LIDAR data." IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 4, pp. 872-882. doi: 10.1109/TGRS.2003.810682.
  21. Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., and Yan, G. (2016). "An Easy-to-Use Airborne LiDAR data filtering method based on cloth simulation." Remote Sensing, Vol. 8, No. 6, 501. doi: 10.3390/rs8060501.