DOI QR코드

DOI QR Code

2022년 남부지역 수문학적 가뭄위험도 평가: 수문학적 이변량 가뭄 지역빈도해석 중심으로

Assessment of hydrological drought risk in the southern region in 2022: based on bivariate regional drought frequency analysis

  • 김윤성 (세종대학교 건설환경공학과) ;
  • 정민규 (세종대학교 건설환경공학과) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과) ;
  • 정승명 (한국전자기술연구원(KETI) 자율지능 IoT 연구센터) ;
  • 권현한 (세종대학교 건설환경공학과)
  • Kim, Yun-Sung (Department of Civil & Environmental Engineering, Sejong University) ;
  • Jung, Min-Kyu (Department of Civil & Environmental Engineering, Sejong University) ;
  • Kim, Tae-Woong (Department of Civil & Environmental Engineering, Hanyang University) ;
  • Jeong, Seung-Myeong (Autonomous IoT Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Kwon, Hyun-Han (Department of Civil & Environmental Engineering, Sejong University)
  • 투고 : 2022.11.13
  • 심사 : 2023.01.27
  • 발행 : 2023.02.28

초록

본 연구에서는 수문학적 가뭄의 위험도 평가를 위해 이변량 지역빈도해석 방법을 적용하여 2022년 가뭄 빈도를 평가하였다. 현재 우리나라의 수문학 분야에서 사용 가능한 자료의 대부분이 자료연수가 부족하여 기존의 지점빈도해석 수행 시 도출되는 결과의 신뢰도에는 한계가 있다. 본 연구에서는 유입량 자료를 대상으로 지역빈도분석을 수행하였으며, 최종적으로는 가뭄사상의 결합재현기간을 도출하여 가뭄위험도 평가를 위한 각 댐 별 빈도분석을 수행하였다. 본 연구에서 제안되는 Copula 기반 지역빈도해석 모형은 가뭄변량 간의 상관성 및 극치 특성을 효과적으로 반영하는 것을 확인할 수 있었으며, 지역빈도해석모형과 지점빈도해석모형의 적합성 검정 결과의 비교를 통해 지역빈도해석 모형의 장점을 확인할 수 있었다. 결과적으로 2022년에 발생한 낙동강 유역의 수문학적 가뭄사상은 결합재현기간이 8년을 상회하는 것으로 나타났으며 남강댐의 경우 결합재현기간이 20년으로 평가되어 낙동강 유역에서 상대적으로 심한 가뭄이 발생한 것으로 판단된다.

This study explored the 2022 drought over the Nakdong River watershed. Here, we developed a bivariate regional frequency analysis method to evaluate the risk of hydrological drought. Currently, natural streamflow data are generally limited to accurately estimating the drought frequency. Under this circumstance, the existing at site frequency analysis can be problematic in estimating the drought risk. On the other hand, a regional frequency analysis could provide a more reliable estimation of the joint return periods of drought variables by pooling available streamflow data over the entire watershed. More specifically, the Copula-based regional frequency analysis model was proposed to effectively take into account the tail dependencies between drought variables. The results confirmed that the regional frequency analysis model showed better performance in model fit by comparing the goodness-of-fit measures with the at-site frequency analysis model. We find that the estimated joint return period of the 2022 drought in the Nakdong River basin is about eight years. In the case of the Nam river Dam, the joint return period was approximately 20 years, which can be regarded as a relatively severe drought over the last three decades.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 지능형 도시수자원 관리사업의 지원을 받아 연구되었습니다(RE201903069).

참고문헌

  1. Byun, H.-R. (2009). "Comparative study of the drought assessment method." The magazine of the Korea Society of Harzard Mitigation, Vol. 9, No. 2, pp. 7-18.
  2. Changnon, S. A. (1987). Detecting drought conditions in Illinois. Circular no. 169.
  3. Eltahir, E.A.B., and Yeh, P. J.-F. (1999). "On the asymmetric response of aquifer water level to floods and droughts in Illinois." Water Resources Research, Vol. 35, No. 4, pp. 1199-1217. https://doi.org/10.1029/1998WR900071
  4. Hosking, J.R. (1990). "L-moments: Analysis and estimation of distributions using linear combinations of order statistics." Journal of the Royal Statistical Society: Series B (Methodological), Vol. 52, No. 1, pp. 105-124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
  5. Hosking, J.R.M., and Wallis, J.R. (1986). "The value of historical data in flood frequency analysis." Water Resources Research, Vol. 22, No. 11, pp. 1606-1612. https://doi.org/10.1029/WR022i011p01606
  6. Hosking, J.R.M., and Wallis, J.R. (1997). Regional frequency analysis: An approach based on L-Moments. Cambridge University Press, Cambridge, UK.
  7. Hosking, J.R.M., and Wallis, J.R. (2005). Regional frequency analysis: An approach based on L-moments. Cambridge University Press, Cambridge, UK.
  8. Kim, J.-G., Kim, J.-Y., Ban, W.-S., and Kwon, H.-H. (2019). "A development of bivariate regional drought frequency analysis model using copula function." Journal of Korea Water Resources Association, Vol. 52, No. 12, pp. 985-999.
  9. Kim, J.-Y., So, B.-J., Kim, T.-W., and Kwon, H.-H. (2016). "A development of trivariate drought frequency analysis approach using copula function." Journal of Korea Water Resources Association, Vol. 49, No. 10, pp. 823-833.
  10. Kwak, J.-W., Kim, D.-G., Lee, J.-S., and Kim, H.-S. (2012). "Hydrological drought analysis using Copula theory." KSCE Journal of Civil and Environmental Engineering Research, Vol. 32, No. 3B, pp. 161-168.
  11. Kwon, H.-H., Kim, J.-Y., Kim, O.-K., and Lee, J.-J. (2013). "A development of regional frequency model based on hierarchical Bayesian model." Journal of Korea Water Resources Association, Vol. 46, No. 1, pp. 13-24. https://doi.org/10.3741/JKWRA.2013.46.1.13
  12. Lee, J.-H., Park, S.-Y., Kim, M. G., and Chung, I.-M. (2021). "Hydrological drought analysis and monitoring using multiple drought indices: The case of Mulrocheon watershed." KSCE Journal of Civil and Environmental Engineering Research, Vol. 41, No. 5, pp. 477-484.
  13. McGuire, J.K., and Palmer, W.C. (1957). "The 1957 drought in the eastern United States." Monthly Weather Review, Vol. 85, No. 9, pp. 305-314. https://doi.org/10.1175/1520-0493(1957)085<0305:TDITEU>2.0.CO;2
  14. Palmer, W.C. (1965). Meteorological drought. US Department of Commerce, Weather Bureau, Washington, D.C., U.S., No. 45, pp. 1-58.
  15. Ryu, J.-H., Lee, D.-R., Ahn, J.-H., and Yoon, Y.-N. (2002). "A comparative study on the drought indices for drought evaluation." Journal of Korea Water Resources Association, Vol. 35, No. 4, pp. 397-410. https://doi.org/10.3741/JKWRA.2002.35.4.397
  16. Shafer, B., and Dezman, L. (1982). "Development of surface water supply index (SWSI) to assess the severity of drought condition in snowpack runoff areas." Proceeding of the Western Snow Conference, Reno, NV, U.S., pp.164-175.
  17. Shiau, J.T. (2006). "Fitting drought duration and severity with two-dimensional Copulas." Water Resources Management, Vol. 20, No. 5, pp. 795-815. https://doi.org/10.1007/s11269-005-9008-9
  18. Shiau, J.-T., and Shen, H. W. (2001). "Recurrence analysis of hydrologic droughts of differing severity." Journal of Water Resources Planning and Management, Vol. 127, No. 1, pp. 30-40. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:1(30)
  19. Sklar, A. (1959). "Fonctions de repartition a n dimensions et leurs marges." l'Institut de Statistique de L'Universite de Paris, Vol. 8, pp. 229-231.
  20. Wilhite, D.A., and Glantz, M.H. (1985). "Understanding the drought phenomenon: The role of definitions." Water International, Vol. 10, No. 3, pp. 111-120. https://doi.org/10.1080/02508068508686328
  21. Wong, G., Van Lanen, H., and Torfs, P. (2013). "Probabilistic analysis of hydrological drought characteristics using meteorological drought." Hydrological Sciences Journal, Vol. 58, No. 2, pp. 253-270. https://doi.org/10.1080/02626667.2012.753147
  22. Yevjevich, V.M. (1967). An objective approach to definitions and investigations of continental hydrologic droughts. Hydrology Paper 23, Colorado State University, Fort Collins, CO, U.S.
  23. Zhang, Q., Xiao, M., Singh, V.P., and Chen, X. (2013). "Copula-based risk evaluation of hydrological droughts in the East River basin, China." Stochastic Environmental Research and Risk Assessment, Vol. 27, No. 6, pp. 1397-1406. https://doi.org/10.1007/s00477-012-0675-9