DOI QR코드

DOI QR Code

Molecular Detection of Phytoplasmas of the 16SrI and 16SrXXXII Groups in Elaeocarpus sylvestris Trees with Decline Disease in Jeju Island, South Korea

  • Geon-Woo, Lee (Department of Forest Environment Science, College of Agriculture and Life Science, Jeonbuk National University) ;
  • Sang-Sub, Han (Department of Forest Environment Science, College of Agriculture and Life Science, Jeonbuk National University)
  • Received : 2022.07.11
  • Accepted : 2023.01.11
  • Published : 2023.02.01

Abstract

Phytoplasmas were discovered in diseased Elaeocarpus sylvestris trees growing on Jeju Island that showed symptoms of yellowing and darkening in the leaves. Leaf samples from 14 symptomatic plants in Jeju-si and Seogwipo-si were collected and phytoplasma 16S rRNA was successfully amplified by nested polymerase chain reaction using universal primers. The sequence analysis detected two phytoplasmas, which showed 99.5% identity to 'Candidatus Phytoplasma asteris' and 'Ca. P. malaysianum' affiliated to 16SrI and 16SrXXXII groups, respectively. Through polymerase chain reaction-restriction fragment length polymorphism (RFLP) analyses using the AfaI (RsaI) restriction enzyme, the presence of two phytoplasmas strains as well as cases of mixed infection of these strains was detected. In a virtual RFLP analysis with 17 restriction enzymes, the 16S rRNA sequence of the 'Ca. P. asteris' strain was found to match the pattern of the 16SrI-B subgroup. In addition, the phytoplasmas in the mixed-infection cases could be distinguished using specific primer sets. In conclusion, this study confirmed mixed infection of two phytoplasmas in one E. sylvestris plant, and also the presence of two phytoplasmas (of the 16SrI and 16SrXXXII groups) in Jeju Island (Republic of Korea).

Keywords

Acknowledgement

This paper was supported by a project, "Investigation of Diagnosis and Characteristics of Yellow Disease on Elaeocarpus sylvestris trees (Project No. FE0100-2018-10-2022)" from the National Institute of Forest Science, Republic of Korea.

References

  1. Alsaheli, Z., Contaldo, N., Mehle, N., Dermastia, M., Elbeaino, T. and Bertaccini, A. 2020. First detection of 'Candidatus Phytoplasma asteris' and 'Candidatus Phytoplasma solani'-related strains in fig trees. J. Phytopathol. 168:63-71. https://doi.org/10.1111/jph.12868
  2. Bertaccini, A., Botti, S., Martini, M. and Kaminska, M. 2000. Molecular evidence for mixed phytoplasma infection in lily plants. Acta Hortic. 568:35-41. https://doi.org/10.17660/actahortic.2002.568.3
  3. Bertaccini, A., Duduk, B., Paltrinieri, S. and Contaldo, N. 2014. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am. J. Plant Sci. 5:1763-1788. https://doi.org/10.4236/ajps.2014.512191
  4. Deng, S. and Hiruki, C. 1991. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. J. Microbiol. Methods 14:53-61. https://doi.org/10.1016/0167-7012(91)90007-D
  5. Gundersen, D. E. and Lee, I.-M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 35:144-151.
  6. Hodgetts, J., Boonham, N., Mumford, R., Harrison, N. and Dickinson, M. 2008. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of 'Candidatus Phytoplasma'. Int. J. Syst. Evol. Microbiol. 58:1826-1837. https://doi.org/10.1099/ijs.0.65668-0
  7. Iwabuchi, N., Endo, A., Kameyama, N., Satoh, M., Miyazaki, A., Koinuma, H., Kitazawa, Y., Maejima, K., Yamaji, Y., Oshima, K. and Namba, S. 2018. First report of 'Candidatus Phytoplasma malaysianum' associated with Elaeocarpus yellows of Elaeocarpus zollingeri. J. Gen. Plant Pathol. 84:160-164. https://doi.org/10.1007/s10327-017-0761-4
  8. Kawabe, Y., Kusunoki, M., Miyashita, S. and Kikuchi, Y. 2000. Genetic diagnosis of phytoplasma diseases on trees. For. For. Prod. Res. Inst. Kenkyu Seika Senshu 2000:10-11 (in Japanese).
  9. Kawabe, Y., Tsuda, J., Matsuura, K., Ogawa, S., Usami, Y. and Kusunoki, M. 2011. Analysis of oxytetracycline and detection of phytoplasma after the trunk injection of oxytetracycline formulation in Elaeocarpus sylvestris var. ellipticus infected with Elaeocarpus yellows. Tree For. Health 15:97-101.
  10. Kumari, S., Nagendran, K., Rai, A. B., Singh, B., Rao, G. P. and Bertaccini, A. 2019. Global status of phytoplasma diseases in vegetable crops. Front. Microbiol. 10:1349.
  11. Lee, G.-W., Han, T.-W., Lee, S. K. and Han, S.-S. 2022. 'Candidatus Phytoplasma malaysianum' (16SrXXXII) associated with Elaeocarpus sylvestris decline in South Korea. For. Sci. Technol. 18:7-13. https://doi.org/10.1080/21580103.2022.2029774
  12. Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E. and Bartoszyk, I. M. 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48:1153-1169. https://doi.org/10.1099/00207713-48-4-1153
  13. Lee, I.-M., Gundersen, D. E., Hammond, R. W. and Davis, R. E. 1994. Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology 84:559-566. https://doi.org/10.1094/Phyto-84-559
  14. Lee, I.-M., Hammond, R. W., Davis, R. E. and Gundersen, D. E. 1993. Universal amplification and analysis of pathogen 16S rRNA for classification and identification of mycoplasmalike organisms. Mol. Plant Pathol. 83:834-842.
  15. Lee, S., Han, S. and Cha, B. 2009. Mixed infection of 16S rDNA I and V groups of phytoplasma in a single jujube tree. Plant Pathol. J. 25:21-25. https://doi.org/10.5423/PPJ.2009.25.1.021
  16. Lim, P. O. and Sears, B. B. 1989. 16S rRNA sequence indicates that plant-pathogenic mycoplasmalike organisms are evolutionarily distinct from animal mycoplasmas. J. Bacteriol. 171:5901-5906. https://doi.org/10.1128/jb.171.11.5901-5906.1989
  17. Mehle, N., Mermal, S., Vidmar, S., Marn, M. V., Dreo, T. and Dermastia, M. 2018. First report of carrot infection with phytoplasmas in Slovenia. In: Proceedings of the 5th European Bois Noir Workshop, pp. 1-4. Ljubljana, Slovenia.
  18. Namba, S. 2019. Molecular and biological properties of phytoplasmas. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 95:401-418. https://doi.org/10.2183/pjab.95.028
  19. Nejat, N., Sijam, K., Abdullah, S. N. A., Vadamalai, G. and Dickinson, M. 2009. Phytoplasmas associated with disease of coconut in Malaysia: phylogenetic groups and host plant species. Plant Pathol. 58:1152-1160. https://doi.org/10.1111/j.1365-3059.2009.02153.x
  20. Nejat, N., Vadamalai, G., Davis, R. E., Harrison, N. A., Sijam, K., Dickinson, M., Abdullah, S. N. and Zhao, Y. 2013. 'Candidatus Phytoplasma malaysianum', a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). Int. J. Syst. Evol. Microbiol. 63:540-548. https://doi.org/10.1099/ijs.0.041467-0
  21. Pagliari, L. and Musetti, R. 2019. Phytoplasmas: an introduction. Methods Mol. Biol. eds. 1875:1-6. https://doi.org/10.1007/978-1-4939-8837-2_1
  22. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  23. Satoh, M., Takahashi, H., Chikamori, M., Tani, Y. and Adachi, N. 2014. Prevalence of Elaeocarpus yellows in Mt. Shiroyama in Tokushima City. Nat. Sci. Res. Univ. Tokushima 28:21-25.
  24. Schneider, B. and Gibb, K. S. 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology 143:3381-3389. https://doi.org/10.1099/00221287-143-10-3381
  25. Schneider, B., Seemuller, E., Smart, C. D. and Kirkpatrick, B. C. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasma. In: Molecular and diagnostic procedures in mycoplasmology, eds. by S. Razin, J. G. Tully, pp. 369-380. Academic Press, San Diego, CA, USA.
  26. Staniulis, J. B., Davis, R. E., Jomantiene, R., Kalvelyte, A. and Dally, E. L. 2000. Single and mixed phytoplasma infections in phyllody- and dwarf-diseased clover plants in Lithuania. Plant Dis. 84:1061-1066. https://doi.org/10.1094/pdis.2000.84.10.1061
  27. Tamura, K., Stecher, G. and Kumar, S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38:3022-3027. https://doi.org/10.1093/molbev/msab120
  28. Weintraub, P. G. and Beanland, L. 2006. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51:91-111. https://doi.org/10.1146/annurev.ento.51.110104.151039
  29. Weintraub, P. G. and Jones, P. 2009. Phytoplasmas: genomes, plant hosts and vectors. CABI International, Wallingford, UK. 331 pp.
  30. Yu, S.-S., Tang, Q.-H., Wu, Y., Lin, M.-X., Zhao, R.-L., Song, W.-W. and Qin, W.-Q. 2021. First report of phytoplasma belonging to 16SrXXXII group associated with witches'-broom symptoms in Trema tomentosa in China. Plant Dis. 105:1191.
  31. Zhao, Y., Wei, W., Lee, I.-M., Shao, J., Suo, X. and Davis, R. E. 2009. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int. J. Syst. Evol. Microbiol. 59:2582-2593. https://doi.org/10.1099/ijs.0.010249-0