DOI QR코드

DOI QR Code

Development of a Real-Time Control & Management System with In-Vitro Diagnostic Medical Device for Dengue Fever

실시간 뎅기열 관리를 위한 관제시스템 개발

  • 안창선 (광운대학교 의료기기개발지원센터) ;
  • 박용호 (건양대학교 의학과 생화학교실) ;
  • 문정대 ((주)젠바디 중앙연구소) ;
  • 박종찬 (광운대학교 의료기기개발지원센터) ;
  • 서영곤 (광운대학교 의료기기개발지원센터) ;
  • 손유락 (광운대학교 의료기기개발지원센터) ;
  • 최윤종 ((주)젠바디 중앙연구소) ;
  • 하양화 ((주)젠바디 중앙연구소) ;
  • 정봉수 (대구경북첨단의료산업진흥재단) ;
  • 김영주 (광운대학교 바이오헬스융합학과)
  • Received : 2022.07.12
  • Accepted : 2022.10.24
  • Published : 2023.02.28

Abstract

Dengue virus transmission is a viral infection disease between humans and Aedes mosquitoes. Dengue is ubiquitous throughout the tropics and subtropical zones, where 1/3 of the global population live. The weather in Korea is also changing to subtropical weather, resulting in increased vulnerable Korean population to dengue virus transmission. It is important to control and prevent the dengue risk with track-recording & monitoring system. It is also required to have the control system to treat and monitor dengue patients with various cases such as regions, ages, genders according to the track-record of the disease. In this paper, we developed a Dengue Control & Prevention System, which can monitor and control dengue outbreaks in real-time with in-vitro diagnostic devices. Dengue Control & Prevention System is composed of in-vitro diagnostic device, which is a fluorescent immunoassay, and real-time monitoring system. In the future, we expect that our Dengue Control & Prevention System can be upgraded to have various disease information from Korea Disease Control and Prevention Agency for government policies and diseases control in Korea.

뎅기열 발병은 전 세계 인구의 약 1/3이 거주하고 있는 열대, 아열대 기후에 집중되며, 우리나라도 아열대 기후로 바꾸고 있어 뎅기열 발병에 취약해지고 있다. 뎅기열은 감염병 관리 차원에서 진단 이력 관리가 중요하다. 감염병 이력에 따라서 지역별, 연령별, 남녀비율 등에 따라서 개개인의 치료 방법과 전략을 수립할 수 있는 체계가 필요하다. 본 논문에서는 뎅기열 관제시스템을 제안하며, 이러한 시스템은 뎅기열의 발병에 대한 체외진단기기를 이용한 실시간 집계방식으로 발병률과 사망률을 감소시킬 수 있는 전략을 수립하는 데 유용하게 활용될 수 있다. 뎅기열 관리를 위한 관제시스템 구성으로 형광면역진단 키트를 이용한 뎅기열 체외진단기기와 실시간 뎅기열 관제시스템으로 구성되어 있다. 본 논문으로 개발된 뎅기열 관제시스템은 향후 정부의 감염병 통합정보와 결합되어 다양한 감염병 관리 및 정책 활용을 위해서 활용될 수 있을 것이다.

Keywords

Acknowledgement

본 논문은 산업통상자원부 우수기업연구소육성사업(ATC+)에 의하여 연구되었음(No.20009597).

References

  1. S. Ranjit and N. Kissoon, "Dengue hemorrhagic fever and shock syndromes," Pediatric Critical Care Medicine, Vol.12, No.1, pp.90-100, 2011. https://doi.org/10.1097/PCC.0b013e3181e911a7
  2. J. R. Anusha, B. C. Kim, K. H. Yu, and C. J. Raj, "Electrochemical biosensing of mosquito-borne viral disease, dengue: A review," Biosensors and Bioelectronics, Vol.142, pp.111511, 2019.
  3. B. R. Murphy and S. S. Whitehead, "Immune response to dengue virus and prospects for a vaccine," Annual Review of Immunology, Vol.29, pp.587-619, 2011. https://doi.org/10.1146/annurev-immunol-031210-101315
  4. B. H. Jeon, S. K. Park, and E. H. Cho, "Epidemiological characteristics of dengue fever cases in Korea, 2014-2018," Public Health Weekly Report; PHWR, Vol.12, No.29, pp.974-979, 2019.
  5. R. Chen and N. Vasilakis, "Dengue--Quo tu et quo vadis?," Viruses, Vol.3, No.9, pp.1562-608, 2011. https://doi.org/10.3390/v3091562
  6. S. Bhatt et al., "The global distribution and burden of dengue," Nature, Vol.496, No.7446, pp.504-507, https://doi.org/10.1038/nature12060
  7. F. J. Colon-Gonzalez et al., "Limiting global-mean temperature increase to 1.5-2 degrees C could reduce the incidence and spatial spread of dengue fever in Latin America," Proceedings of the National Academy of Sciences of the United States of America Vol.115, No.24, pp.6243-6248, 2018. https://doi.org/10.1073/pnas.1718945115
  8. R. W. Sutherst, "Global change and human vulnerability to vector-borne diseases," Clinical Microbiology Reviews, Vol.17, No.1, pp.136-73, 2004. https://doi.org/10.1128/CMR.17.1.136-173.2004
  9. S. H. Lee, "Climate change and Vector (Mosquitoes) : JEJU Island, South Korea analysis," Master's Thesis, Jeju National University Graduate School, Korea Jeju, 2011.
  10. N. Vasilakis, J. Cardosa, K. A. Hanley, E. C. Holmes, and S. C. Weaver, "Fever from the forest: Prospects for the continued emergence of sylvatic dengue virus and its impact on public health," Nature Reviews Microbiology, Vol.9, No.7, pp.532-41, 2011. https://doi.org/10.1038/nrmicro2595
  11. C. H. Chew et al., "Rural-urban comparisons of dengue seroprevalence in Malaysia," BMC Public Health, Vol.16, No.1, pp.824, 2016.
  12. S. A. Kularatne, "Dengue fever," BMJ : British Medical Journal, Vol.351, pp.h4661, 2015.
  13. W. H. Organization, "Dengue guidelines for diagnosis, treatment, prevention and control: New edition," Geneva: World Health Organization, 2009.
  14. KDCA, "Korea Centers for Disease Control and Prevention 2022," 2nd ed., Cheongju: Korea Disease Control and Prevention Agency, pp.47-62, 2022.
  15. Coronavirus (COVID-19), Republic of Korea [internet], http://ncov.mohw.go.kr
  16. C. K. CHONG et al., "Rapid diagnostic kit for detecting anti-dengue virus antibodies using monoclonal antibody specific to the domain 1 of dengue envelope protein and its manufacturing method," Republic of Korea Patent 10-1520084, 2015.
  17. Advanced Technology Center Plus(ATC+), "Development of a Severe Dengue Diagnostic Kit," No.20009597: GenBody Inc., 2022.
  18. GenBody, "The image was reprocessed with the permission of the original author in Confiscope F40," Korea Cheonan: GenBody Inc, pp.34, 2022.
  19. M. Moretti, B. Pieretti, A. Masucci, D. Sisti, M. Rocchi, and E. Delprete, "Role of signal-to-cutoff ratios in hepatitis C virus antibody detection," Clinical and Vaccine Immunology, Vol.19, No.8, pp.1329-1331, 2012.
  20. R. G. Depalma, V. W. Hayes, and T. J. O'Leary, "Optimal serum ferritin level range: Iron status measure and inflammatory biomarker," Metallomics, Vol.13, No.6, 2021.
  21. P. Poonkuzhi Naseef et al., "Therapeutic potential of induced iron depletion using iron chelators in Covid-19," Saudi Journal of Biological Sciences, Vol.29, No.4, pp.1947-1956, 2022. https://doi.org/10.1016/j.sjbs.2021.11.061
  22. H. Tanimura, K. Mizuno, and H. Okamoto, "Serum levels of soluble CD163 as a specific marker of macrophage/monocyte activity in sarcoidosis patients," Sarcoidosis Vasculitis and Diffuse Lung Diseases, Vol.32, No.2, pp.99-105, 2015.
  23. K. W. Lau, C. D. Chen, H. L. Lee, V. L. Low, H. H. Moh, and M. Sofian-Azirun, "Ovitrap surveillance in Sarawak, Malaysia: A comprehensive study," Tropical Biomedicine, Vol.34, No.4, pp.795-803, 2017.
  24. G. T. Ai-Leen and R. Jin Song, "The Use of GIS in Ovitrap Monitoring for Dengue Control in Singapore," World Health Organization. Regional Office for South-East Asia, Vol.24, pp.110-116, 2000.
  25. L. Regis et al., "An entomological surveillance system based on open spatial information for participative dengue control," Anais da Academia Brasileira de Ciencias, Vol.81, No.4, pp.655-662, 2009. https://doi.org/10.1590/S0001-37652009000400004
  26. L. N. Regis et al., "Sustained Reduction of the Dengue Vector Population Resulting from an Integrated Control Strategy Applied in Two Brazilian Cities," PLoS ONE, Vol.8, No.7, pp.e67682, 2013.