• Title/Summary/Keyword: Dengue Virus

Search Result 31, Processing Time 0.02 seconds

Seroprevalence of Dengue Virus Antibody in Korea (한국인에서 뎅기바이러스 항체의 혈청 유병률 연구)

  • Lee, Ji Hyen;Kim, Han Wool;Kim, Kyung-Hyo
    • Pediatric Infection and Vaccine
    • /
    • v.25 no.3
    • /
    • pp.132-140
    • /
    • 2018
  • Purpose: The number of dengue fever cases is rising due to increasing overseas travel. Vaccination makes severe dengue fever in seronegative individuals after vaccination when they exposure to wild-type dengue virus. We investigated the seroepidemiology of the dengue virus for monitoring of Korean dengue virus immunity and establishing the prevention of dengue infection. Methods: The study was based on 446 residual sera collected from 98 infants (2 months to 1 year old), 152 adolescents (13 to 19 years old), 90 adults (20 to 50 years old), and 106 elderly participants (more than 65 years old) for other studies. Antibody levels for dengue virus immunoglobulin G (IgG) in each age group were measured using an enzyme-linked immunosorbent assay (ELISA). For each dengue virus IgG positive or equivocal result, an IgG ELISA was performed for Japanese encephalitis virus. Results: Of the 446 serum samples, only 1 (0.2%) adolescent had a positive result from the dengue IgG antibody test. In the dengue virus IgG antibody test, 14 (3.1%) samples showed equivocal results (10 adolescents and 4 elderly). In the 1 positive case of dengue virus IgG, the Japanese encephalitis IgG test was also positive. In the 14 equivocal cases of dengue virus IgG, there were 6 positive, 3 equivocal, and 5 negative of Japanese encephalitis IgG. Conclusions: The seroprevalence rate of dengue virus was very low in Koreans. This study provides important data for establishing the policy for preventive measures of dengue fever. It will be necessary to continuously monitor for dengue virus immunity.

A Study on Serologic Diagnosis for Dengue Virus Infection

  • Sang-Wook Park;Je-Hoon Yang;Hyung-Joon Bae;Hi-Joo Moon;Young-Dae Woo
    • Biomedical Science Letters
    • /
    • v.8 no.4
    • /
    • pp.269-273
    • /
    • 2002
  • Dengue fever (DF) is an acute febrile illness caused by dengue viruses in the family Flaviviridae, genus Flavivirus. DF has so far posed any problem in Korea, however it has been recently believed to be associated with oversea's traveler infected with dengue virus. Antibody titers of sera from DF patients against dengue virus were measured by indirect immunofluorescence assay (IFA) and plaque reduction neutralization test (PRNT), including the haematologic test. Three of patients with DF showed highly fluorescent and neutralizing antibody titers by IFA and PRNT assay. Two of them showed higher, remarkably. Meanwhile, one of them was tested and resulted in severe tirombocytopenia, elevated serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities as well as mild leucopenia, increased monocytes and basophils and depressed lymphocytes in haematological differential count.

  • PDF

Analysis of Patent Trend on Dengue Virus Detection Technology (뎅기 바이러스 검출기술 관련 특허동향 분석)

  • Choi, Jae-Won;Jo, Byung-Gwan;Kim, Hak Yong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.2
    • /
    • pp.259-268
    • /
    • 2019
  • Dengue virus is a typical mosquito-borne virus, and the half of the world's population is exposed to infection. Dengue virus causes relatively mild symptoms such as dengue fever. However, when not treated properly, it is known to cause severe symptoms such as dengue hemorrhagic fever and dengue shock syndrome with a mortality rate of over 20%. Development of dengue virus detection technology is very important because it is reported that early diagnosis of dengue fever can lower the mortality rate to less than 1%. In this study, patent search related to dengue virus detection technology was conducted in Korea, USA, Europe, Japan, and China. The quantitative analysis of 69 validated patents from the searched patents was conducted by country, year, and patent holder. In addition, in-depth analysis was carried out by classifying into three categories: molecular diagnostics, immuno-diagnostics, and cell culture-based diagnostics from all validated patents. From these results, we analyzed the patent trend related to dengue virus detection and dengue fever diagnosis technology and discussed the features and limitations of molecular diagnostics and immuno-diagnostics at present level. Furthermore, we discussed the direction of technology development and future prospects to overcome limitations.

Distinct Humoral and Cellular Immunity Induced by Alternating Prime-boost Vaccination Using Plasmid DNA and Live Viral Vector Vaccines Expressing the E Protein of Dengue Virus Type 2

  • George, Junu A.;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.268-280
    • /
    • 2011
  • Background: Dengue virus, which belongs to the Flavivirus genus of the Flaviviridae family, causes fatal dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) with infection risk of 2.5 billion people worldwide. However, approved vaccines are still not available. Here, we explored the immune responses induced by alternating prime-boost vaccination using DNA vaccine, adenovirus, and vaccinia virus expressing E protein of dengue virus type 2 (DenV2). Methods: Following immunization with DNA vaccine (pDE), adenovirus (rAd-E), and/or vaccinia virus (VV-E) expressing E protein, E protein-specific IgG and its isotypes were determined by conventional ELISA. Intracellular CD154 and cytokine staining was used for enumerating CD4+ T cells specific for E protein. E protein-specific CD8+ T cell responses were evaluated by in vivo CTL killing activity and intracellular IFN-${\gamma}$ staining. Results: Among three constructs, VV-E induced the most potent IgG responses, Th1-type cytokine production by stimulated CD4+ T cells, and the CD8+ T cell response. Furthermore, when the three constructs were used for alternating prime-boost vaccination, the results revealed a different pattern of CD4+ and CD8+ T cell responses. i) Priming with VV-E induced higher E-specific IgG level but it was decreased rapidly. ii) Strong CD8+ T cell responses specific for E protein were induced when VV-E was used for the priming step, and such CD8+ T cell responses were significantly boosted with pDE. iii) Priming with rAd-E induced stronger CD4+ T cell responses which subsequently boosted with pDE to a greater extent than VV-E and rAd-E. Conclusion: These results indicate that priming with live viral vector vaccines could induce different patterns of E protein-specific CD4+ and CD8+ T cell responses which were significantly enhanced by booster vaccination with the DNA vaccine. Therefore, our observation will provide valuable information for the establishment of optimal prime-boost vaccination against DenV.

The Sensitivity Comparison of Immunodiagnostic Assays for Diagnosing Dengue Fever

  • Zahoor, Muhammad;Bahadar, Haji;Uddin, Salah;Naz, Sumaira
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Dengue fever is a vector borne disease caused by a dengue virus. It is an RNA virus of the family flaviviridae, with different serotypes. Herein, we report our attempt to carry out a sensitivity comparison of immunodiagnostic assays for dengue fever in dengue positive patients. Blood samples from 189 volunteers were collected. To determine the sensitivity of the NS1 test, two different types of tests-immunochromatographic tri-line test and rapid dengue test (RDT)-as well as IgM and IgG capture ELISA were performed. The result of RDT has shown that 59.7% of volunteers were IgM positive and 50.2% were IgG positive. Conversely, the results from capture ELISA shows 79.8% and 59.7% for IgM and IgG, respectively. The sensitivity of the capture ELISA test for IgM and IgG was higher than that of immunochromatographic tri-line rapid test, but the specificity was lower. Therefore, to confirm dengue fever, we recommend performing more detailed, investigative tests since a single test may not be sufficient.

M Protein from Dengue virus oligomerizes to pentameric channel protein: in silico analysis study

  • Ayesha Zeba;Kanagaraj Sekar;Anjali Ganjiwale
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.41.1-41.11
    • /
    • 2023
  • The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target. The oligomerization of the monomeric protein was studied using ab initio modeling and molecular dynamics simulation in an implicit membrane environment. The representative structures obtained showed pentamer as the most stable oligomeric state, resembling an ion channel. Glutamic acid, threonine, serine, tryptophan, alanine, isoleucine form the pore-lining residues of the pentameric channel, conferring an overall negative charge to the channel with approximate length of 51.9 Å. Residue interaction analysis for M protein shows that Ala94, Leu95, Ser112, Glu124, and Phe155 are the central hub residues representing the physicochemical interactions between domains. The virtual screening with 165 different ion channel inhibitors from the ion channel library shows monovalent ion channel blockers, namely lumacaftor, glipizide, gliquidone, glisoxepide, and azelnidipine to be the inhibitors with high docking scores. Understanding the three-dimensional structure of M protein will help design therapeutics and vaccines for Dengue infection.

Bioinformatic Analysis of Envelope Protein Domains of Zika Virus and Dengue Virus (지카 바이러스 및 뎅기 바이러스의 외피 단백질을 구성하는 도메인의 생물정보학적 분석)

  • Choi, Jae-Won;Kim, Hak Yong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.632-643
    • /
    • 2019
  • In recent years, large scale damages from arbovirus infections by mosquitoes have been reported worldwide due to factors such as change in global climate, increased overseas travel, and increased logistics movement between countries. Among them, Zika virus and dengue virus belonging to genus Flavivirus are representative. In this study, we performed in-depth analyses of the envelope (E) protein that perform essential functions for host infection of Zika virus and dengue virus based on bioinformatics databases. The domain analysis of E protein was performed to determine the type, location, and function, and homology analysis for each domain. From these results, EDIII showing low homology was identified. The homology and immunogenicity of each peptide constituting EDIII were analyzed and three-dimensional structures were modeled. Furthermore, we discussed their biological meaning and how they could be used.

Development of a Real-Time Control & Management System with In-Vitro Diagnostic Medical Device for Dengue Fever (실시간 뎅기열 관리를 위한 관제시스템 개발)

  • Changsun, Ahn;Yongho, Park;Jungdae, Moon;Jongchan, Park;Youngkon, Seo;Allen, Sohn;Yoonjong, Choi;Yanghwa, Ha;Bongsu, Jung;Youngjoo, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 2023
  • Dengue virus transmission is a viral infection disease between humans and Aedes mosquitoes. Dengue is ubiquitous throughout the tropics and subtropical zones, where 1/3 of the global population live. The weather in Korea is also changing to subtropical weather, resulting in increased vulnerable Korean population to dengue virus transmission. It is important to control and prevent the dengue risk with track-recording & monitoring system. It is also required to have the control system to treat and monitor dengue patients with various cases such as regions, ages, genders according to the track-record of the disease. In this paper, we developed a Dengue Control & Prevention System, which can monitor and control dengue outbreaks in real-time with in-vitro diagnostic devices. Dengue Control & Prevention System is composed of in-vitro diagnostic device, which is a fluorescent immunoassay, and real-time monitoring system. In the future, we expect that our Dengue Control & Prevention System can be upgraded to have various disease information from Korea Disease Control and Prevention Agency for government policies and diseases control in Korea.

A Critical Analysis of Intracranial Hemorrhage as a Fatal Complication of Dengue Fever

  • Andre Marolop Pangihutan Siahaan;Steven Tandean;Bahagia Willibrordus Maria Nainggolan;Junita Tarigan;Johan Samuel Sitanggang
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.5
    • /
    • pp.494-502
    • /
    • 2023
  • Dengue fever is the most rapidly spreading mosquito-borne virus in the world, infecting about 100 million individuals. A rare but possibly dangerous consequence of dengue illness is intracranial hemorrhage (ICH). Currently, the pathogenesis of ICH is unknown. A number of studies have found a variety of risk factors for ICH in dengue. In addition, studies have reported the use of emergency surgery while monitoring thrombocytopenia in the therapy of dengue ICH. This review enumerates the potential predictors of ICH in dengue, discusses the use of brain imaging, and mentions the possibility of emergency surgery.

The Two-Component Protease NS2B-NS3 of Dengue Virus Type 2: Cloning, Expression in Escherichia coli and Purification of the NS2B, NS3(pro) and NS2B-NS3 Proteins

  • Champreda, Veerawat;Khumthong, Rabuesak;Subsin, Benchamas;Angsuthanasombat, Chanan;Panyim, Sakol;Katzenmeier, Gerd
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.294-299
    • /
    • 2000
  • Proteolytic processing of the dengue virus serotype 2 polyprotein precursor is catalyzed by a host signal peptidase and a virus encoded two-component protease consisting of the nonstructural proteins, NS2B and NS3. We expressed in Escherichia coli the NS2B, NS3(pro) and NS2B-NS3 proteins from the dengue virus type 2 strain 16681 as N-terminal fusions with a hexahistidine affinity tag under the control of the inducible trc promoter. All fusion proteins were purified to >90% purity by detergent extraction of inclusion bodies and a single step metal chelate chromatography. Proteins were refolded on-column and recovered with yields of 0.5, 6.0 and 1.0 mg/l of E. coli culture that was grown to $OD_{600}=1.0$ for NS2B, NS3(pro) and NS2B-NS3, respectively. Purified proteins gave strong signals in Western blots using $Ni^{2+}-nitrilotriacetic$ acid as a probe for the presence of the polyHis tag. During the purification process, $(His)_{6}NS2B-NS3$ was apparently not autoproteolytically cleaved at the NS2B/NS3 site.

  • PDF