DOI QR코드

DOI QR Code

바텀애시와 천연 잔골재를 혼입한 다공성 콘크리트의 단위질량과 열전도도의 상관분석

Correlation Analysis between Unit Weight and Thermal Conductivity in Porous Concrete Containing Natural Fine and Bottom Ash Aggregates

  • 정승태 (군산대학교 토목공학과) ;
  • 양인환 (군산대학교 토목공학과)
  • Seung-Tae Jeong (Department of Civil Engineering, Kunsan National University) ;
  • In-Hwan Yang (Department of Civil Engineering, Kunsan National University)
  • 투고 : 2023.12.04
  • 심사 : 2023.12.19
  • 발행 : 2023.12.30

초록

본 논문에서는 바텀애시 골재에 천연 잔골재를 혼입한 다공성 콘크리트의 열적 특성을 분석하였다. 본 연구에서는 바텀애시 골재에 천연 잔골재를 사용하여 각 골재의 재료 특성을 파악 한 후, 다공성 콘크리트의 골재로 사용하였다. 물-바인더 비는 0.25으로 고정하여, 가압다짐을 0.5, 1.5 및 2.5 MPa 수준으로 지정하여 다공성 콘크리트 시편을 제작하였다. 단위질량, 총 공극률 및 열전도도 실험을 진행하고 분석을 수행하였다. 가압다짐 수준이 증가하고, 천연잔골재 혼입률이 증가하면 단위질량과 열전도도 값은 증가하였으며, 총 공극률 값은 감소하였다. 또한, 다공성 콘크리트의 단위질량과 총 공극률, 열전도도 상관관계 그래프를 제시하여 해외 실험 사례와 비교 분석하였다. 이후 실험 결과에 대한 회귀 분석을 진행하여 상관계수(R2) 값을 분석하였다.

In this paper, the thermal properties of porous concrete containing natural fine aggregates in bottom ash aggregates were analyzed. In this study, natural fine aggregates were used for bottom ash aggregates to understand the material properties of each aggregate and then used as an aggregate for porous concrete. A porous concrete specimen was manufactured by fixing the water-binder ratio at 0.25 and designating the compaction at 0.5, 1.5, and 2.5 MPa. Unit weight, total void ratio and thermal conductivity test were measured and discussed. As the compaction increased and the mixing ratio of natural fine aggregates increased, the unit weight and thermal conductivity increased, and the total void ratio decreased. In addition, the correlations between unit weight, total void ratio and thermal conductivity of porous concrete with previous experimental data were presented and the correlation coefficient (R2) was also analyzed.

키워드

과제정보

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2023RIS-008)

참고문헌

  1. Anandaraj, S., Karthik, S., Sylesh, S., Kishor, R., Suresh, K., Prakash, K.J., Kannan, K.D. (2023). Experimental investigation on sugarcane bagasse fiber reinforced concrete using bottom ash as sand replacement, Materials Today : Proceedings.
  2. Arenas, C., Leiva, C., Vilches, L. F., Cifuentes, H. (2013). Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers, Waste Management, 33(11), 2316-2321. https://doi.org/10.1016/j.wasman.2013.07.008
  3. Balotiya, G., Gaur, A., Somani, P., Sain, A. (2023). Investigating mechanical and durability aspects of concrete incorporating wollastonite and bottom ash, Materials Today : Proceedings.
  4. Beddaa, H., Tchiotsop, J., Fraj, A.B., Some, C. (2023). Reuse of river sediments in pervious concrete: towards an adaptation of concrete to the circular economy and climate change challenges, Construction and Building Materials, 368, 130443.
  5. Belaid, F. (2022). How does concrete and cement industry transformation contribute to mitigating climate change challenges?, Resources, Conservation & Recycling Advances, 15, 200084.
  6. Carsana, M., Tittarelli, F., Bertolini, L. (2013). Use of no-fines concrete as a building material: strength, durability properties and corrosion protection of embedded steel, Cement and Concrete Research, 48, 64-73 https://doi.org/10.1016/j.cemconres.2013.02.006
  7. Chandrappa, A.K., Biligiri, K.P. (2016). Pervious concrete as a sustainable pavement material - research findings and future prospects: a state-of-the-art review, Construction and Building Materials, 111, 262-274. https://doi.org/10.1016/j.conbuildmat.2016.02.054
  8. Embong, R., Kusbiantoro, A., Muthusamy, K., Ismail, N. (2021). Recycling of coal bottom ash (CBA) as cement and aggregate replacement material: a review, IOP Conference Series; Earth and Environmental Science, 682(1), 12035.
  9. Gaur, A., Mathur, N., Somani, P. (2020). Experimental investigation of bottom ash as a capable soil stabilizer, IOP Conference Series; Materials Science and Engineering, 872(1), 12138.
  10. Huang, B., Wu, H., Shu, X., Burdette, E.G. (2010). Laboratory evaluation of permeability and strength of polymer-modified pervious concrete, Construction and Building Materials, 24(5), 818-823. https://doi.org/10.1016/j.conbuildmat.2009.10.025
  11. Jang, J.G., Ahn, Y.B., Souri, H., Lee, H.K. (2015). A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: heavy metal leaching characteristics and compressive strength, Construction and Building Materials, 79, 173-181. https://doi.org/10.1016/j.conbuildmat.2015.01.058
  12. Jeong, S.T., Kim, B.S., Park, J.H., Yang, I.H. (2021). An experimental study on thermal property of porous concrete containing bottom ash, Journal of the Korean Recycled Construction Resources Institute, 9(4), 625-632 [in Korean].
  13. Jeong, S.T., Park, J.H., Yang, I.H. (2023). Strength properties of porous concrete containing natural fiine aggregate and bottom ash aggregate, Journal of the Korean Recycled Construction Resources Institute, 11(3), 184-193. [in Korean].
  14. Kahrizi, E., Sedighi, M., Rajaee, T. (2023). The effect of adsorbent-containing nanoparticles on the efficiency of porous concrete, Construction and Building Materials, 408, 133696.
  15. Kim, H.K., Lee, H.K. (2011). Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete, Construction and Building Materials, 25(2), 1115-1122. https://doi.org/10.1016/j.conbuildmat.2010.06.065
  16. Kim, J.E., Kim, H.K. (2022). Environment and economic assessment of mortar with coal bottom ash fine aggregate based on equivalent-strength and -durability ddesign, Proceedings of the Korea Concrete Institute, 34(2), 375-376. [in Korean].
  17. Menendez, E., Alvaro, A.M., Hernandez, M.T., Parra, J.L. (2014). New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash, Journal of Environmental Management, 133, 275-283. https://doi.org/10.1016/j.jenvman.2013.12.009
  18. Nguyen, D.H., Boutouil, M., Sebaibi, N., Baraud, F., Leleyter, L. (2017). Durability of pervious concrete using crushed seashells, Construction and Building Materials, 135, 137-150. https://doi.org/10.1016/j.conbuildmat.2016.12.219
  19. Park, J.H., Jeong, S.T., Bui, Q.T., Yang, I.H. (2022). Strength and permeability properties of pervious concrete containing coal bottom ash aggregates, Materials, 15(21), 7847.
  20. Park, S.B., Jang, Y.I., Lee, J., Lee, B.J. (2009). An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea, Journal of Hazardous Materials, 166(1), 348-355. https://doi.org/10.1016/j.jhazmat.2008.11.054
  21. Park, S.B., Tia, M. (2004). An experimental study on the water-purification properties of porous concrete, Cement and Concrete Research, 34(2), 177-184. https://doi.org/10.1016/S0008-8846(03)00223-0
  22. Shen, P., Zheng, H., Lu, J., Poon, C.S. (2021). Utilization of municipal solid waste incineration bottom ash(IBA) aggregates in high-strength concrete, Resources, Conservation and Recycling, 174, 105736.
  23. Siddique, R. (2010). Use of municipal solid waste ash in concrete, Resources, Conservation and Recycling, 55(2), 83-91. https://doi.org/10.1016/j.resconrec.2010.10.003
  24. Singh, M., Siddique, R. (2014). Compressive strength, drying shrinkage and chemical resistance of concrete incorporating coal bottom ash as partial or total replacement of sand, Construction & Building Materials, 68, 39-48. https://doi.org/10.1016/j.conbuildmat.2014.06.034
  25. Singh, N., Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement, Construction and Building Materials, 233, 117267.
  26. Singh, N., Mithulraj, M., Arya, S. (2019). Utilization of coal bottom ash in recycled concrete aggregates based self-compacting concrete blended with metakaolin, Resources, Conservation and Recycle, 144, 240-251. https://doi.org/10.1016/j.resconrec.2019.01.044
  27. Singh, S.B., Murugan, M., Chellapandian, M., Dixit, S., Bansal, S., Reddy, K.S.K., Gupta, M., Vafaeva, K.M. (2023). Effect of fly ash addition on the mechanical properties of pervious concrete, Materials Today: Proceedings.
  28. Su, H., Yang, J., Ling, T., Ghataora, G.S., Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes, Journal of Cleaner Production, 91, 288-296 https://doi.org/10.1016/j.jclepro.2014.12.022
  29. Wang, P., Xu, C., Li, Q., Guo, Y., Wang, L. (2023). Evaluation on the mechanical, thermal insulation and durability properties of wood recycled ecological concrete, Materialia, 32, 101965.
  30. Yang, I.H., Jeong, S.T., Park, J.H. (2022a). Effects of the compaction and size of bottom ash aggregate on thermal conductivity of porous concrete, Journal of the Korean Recycled Construction Resources Institute, 10(3), 195-203 [in Korean].
  31. Yang, I.H., Jeong, S,T., Park, J,H. (2022b). A study on the correlation between strength and compaction of porous concrete using bottom ash aggregate, Journal of the Korean Recycled Construction Resources Institute, 10(4), 359-366 [in Korean].
  32. Yang, I.H., Park, J.H. (2020). A study on the thermal properties of high-strength concrete containing CBA fine aggregates, Materials, 13(7), 1493.
  33. Yang, I.H., Park, J.H., Jung, H.W. (2020). An experimental study on the thermal conductivity of concrete containing coal bottom ash aggregate, XV International Conference on Durability of Building Materials and Components (DBMC 2020), 1-6.
  34. Yang, I.H., Park, J.H., Kim, K.C., Yoo, S.W. (2021). A comparative study on the thermal conductivity of concrete with coal bottom ash under different drying conditions, Advances in Civil Engineering, 2021, 1-12. https://doi.org/10.1155/2021/7449298
  35. Yang, J., Jiang, G. (2003). Experimental study on properties of pervious concrete pavement materials, Cement and Concrete Research, 33(3), 381-386. https://doi.org/10.1016/S0008-8846(02)00966-3
  36. Zaetang, Y., Wongsa, A., Sata, V., Chindaprasirt, P. (2013). Use of lightweight aggregates in pervious concrete, Construction and Building Materials, 48, 585-591. https://doi.org/10.1016/j.conbuildmat.2013.07.077